<<
>>

Нейтринное охлаждение; периодическое изменение интенсивности ядерных реакций

  Что произойдет с нашей звездой, масса которой в 7 раз больше солнечной, когда в ее центре выгорит весь гелий? Будет ли и дальше один источник ядерной энергии заменяться другим? Станет ли повышаться температура ядра, пока при 300 миллионах градусов не начнется ядерное горение углерода? К сожалению, сегодня пока еще очень трудно проследить за последующим развитием звезд с помощью вычислительной машины.
После выгорания гелия в центре звезды температура и давление продолжают увеличиваться. Это ведет к горению углерода. Однако здесь возникают новые трудности.

Когда давление и температура в центре звезды становятся достаточно высокими, при встрече электрона и кванта света могут возникать две новые элементарные частицы (рис 7 1). Одну из них мы уже знаем -это нейтрино. Вторая частица очень похожа на нейтрино, ее называют антинейтрино. Свойства этой частицы очень похожи на свойства обычного нейтрино. Антинейтрино тоже свободно проникают через звездное вещество и вылетают наружу. Звезды прозрачны не только для нейтрино, но и для антинейтрино. При рождении пары таких частиц (нейтрино и антинейтрино) расходуется энергия их «родителей» электронов и квантов света. Эта энергия принадлежит теперь родившимся «близнецам» и свободно уносится ими в космическое пространство Когда центральная область звезды сжимается, там повышается температура и приближается начало ядерной реакции горения углерода. Одновременно возникает все больше пар нейтрино антинейтрино. Они уносят энергию и охлаждают внут- ренггие области звезды. При этом ядерное горение углерода прекращается или по крайней мере сводится к минимуму. Когда превращение углерода в другие элементы все же начинается, эта реакция происходит взрывообразно. Не исключено, что при таком взрыве может разрушиться вся

1*пс.

7.1. При температурах свыше 100 миллионов градусов при 1 юлкиовении электрона (серый шарик) с квантом света (красная иплпистая стрелка) может образоваться пара нейтрино антинейтрин^.

шезда. Чтобы точно узнать последствия таких процессов, нужно провести модельные расчеты для этой фазы развития шсзд Однако это сопряжено с новыми трудностями.

На поздних стадиях развития звезд, когда энергия выде- iHeicH за счет горения водорода и гелия в двух сферических слоях, ядерные реакции протекают неравномерно. Выделение тергии возрастает и убывает с периодом в несколько сотен ист. Вначале светимость звезды определяется в основном ндерной реакцией горения водорода, затем основную роль начинает играть выделение энергии при горении гелия. Эти процессы чередуются друг с другом. Над «работающим» с(|gt;ерическим слоем возникают области конвективного перемешивания звездного вещества. Через некоторое время это конвективное перемешивание прекращается. Для точного моделирования этих процессов с помощью вычислительной машины нужно по отдельности исследовать зажигание и yi асание каждого из сферических слоев, где происходит I орение ядерного топлива. Чтобы смоделировать один период изменения яркости, нужно построить по меньшей мере около сотни моделей внутренней структуры звезды. Эти сто моделей соответствуют примерно ста годам реальной жизни шезды. Нам же нужно следить за развитием звезды на протяжении нескольких миллионов лет. Мы видим, что это практически неразрешимая задача. Все исследовательские группы, которые изучают развитие звезд с помощью компью

терных моделей, не смогли до настоящего времени преодолеть эти трудности.

Собственно говоря, даже если бы мы смогли решить задачу, то затем перед нами возникли бы новые проблемы. Ядерное горение стало бы еще более сложным. Когда два ядра атомов углерода сталкиваются и взаимодействуют друг с другом, результатом этой реакции могут служить разные продукты. Возникают ядра магния, кислорода, неона или натрия. Все эти ядра синтезируются с различной вероятностью. Химический состав звезды еще больше усложняется. Кроме того, ядерное горение многих более тяжелых элементов начинается при близких значениях температуры. Иными словами, в одном и том же месте звезды могут одновременно протекать различные ядерные реакции. Создатели компьютерных моделей вынуждены были отступить перед столь сложной задачей. На этом этапе развития звезд были исчерпаны возможности построения компьютерных моделей. Теперь мы уже не можем точно сказать, что происходит дальше со звездами. Тем не менее можно выдвинуть некоторые разумные предположения.

<< | >>
Источник: Киппенхан Р.. 100 миллиардов солнц: Рождение, жизнь и смерть звезд. 1990

Еще по теме Нейтринное охлаждение; периодическое изменение интенсивности ядерных реакций:

  1. Нейтринное охлаждение; периодическое изменение интенсивности ядерных реакций
  2. Дальнейшая судьба Солнца