<<
>>

Почему затмения повторяются через 18 лет?

Задолго до нашей эры вавилонские наблюдатели неба подметили, что ряд затмений - и солнечных и лунных - повторяется каждые 18 лет и 10 дней. Период этот называли «саросом». Пользуясь им, древние предсказывали наступление затмений, но они не знали, чем обусловливается столь правильная периодичность и почему «сарос» имеет именно такую, а не иную продолжительность.

Обоснование периодичности затмений было найдено гораздо позднее, в результате тщательного изучения движения Луны.

Чему равно время обращения Луны по ее орбите? Ответ на этот вопрос может быть различен в зависимости от того, в какой момент считать законченным оборот Луны вокруг Земли. Астрономы различают пять родов месяцев, из которых нас интересуют сейчас только два:

Так называемый «синодический» месяц, т е. промежуток времени, в течение которого Луна совершает по своей орбите полный оборот, если следить за этим движением с Солнца. Это - период времени, протекающий между двумя одинаковыми фазами Луны, например, от новолуния до новолуния. Он равен 29,5306 суток. Так называемый драконический месяц, т. е. промежуток, по истечении которого Луна возвращается к тому же «узлу» своей орбиты (узел - пересечение лунной орбиты с плоскостью земной орбиты). Продолжительность такого месяца - 27,2122 суток.

Затмения, как легко сообразить, происходят только в моменты, когда Луна в фазе полнолуния или новолуния бывает в одном из своих узлов: тогда ее центр находится на одной прямой с центрами Земли и Солнца. Очевидно, что если сегодня случилось затмение, то оно должно наступить вновь через такой промежуток времени, который заключает целое число синодических и драконических месяцев: тогда повторятся условия, при которых бывают затмения.

Как находить подобные промежутки времени? Для этого надо решить уравнение 29,5306х = 27,2122у,

где х и у - целые числа. Представив его в виде пропорции

видим, что наименьшие точные решения этого уравнения таковы:

Получается огромный, в десятки тысячелетий, период времени, практически бесполезный.

Древние астрономы довольствовались решением приближенным. Наиболее удобное средство для отыскания приближений в подобных случаях дают непрерывные дроби. Развернем дробь

в непрерывную. Выполняется это так. Исключив целое число, имеем

В последней дроби делим числитель и знаменатель на числитель:

Числитель и знаменатель дроби

Я. И. Перельман. «Занимательная астрономия»

17 09$

23 182

делим на числитель и так поступаем в дальнейшем. Получаем в конечном итоге

Из этой дроби, беря первые ее звенья и отбрасывая остальные, получаем такие последовательные приближения:

Пятая дробь в этом ряду дает уже достаточную точность. Если остановиться на ней, т. е. принять х = 223, а у = 242, то период повторяемости затмений получится равным 223 синодическим месяцам, или 242 драконическим.

Это составляет 6585V3 суток, т. е. 18 лет 11,3 суток (или 10,316 суток).

Таково происхождение сароса. Зная, откуда он произошел, мы можем отдать себе отчет и в том, насколько точно можно с его помощью предсказывать затмения. Мы видим, что, считая сарос равным 18 годам 10 суткам, отбрасывают 0,3 суток. Это должно сказаться в том, что затмения, предусмотренные по такому укороченному периоду, будут наступать в другие часы дня, чем в предшествующий раз (примерно на 8 часов позже), и только при пользовании периодом, равным тройному точному саросу, затмения будут повторяться почти в те же моменты дня.

Кроме того, сарос не учитывает изменений расстояния Луны от Земли и Земли от Солнца, изменений, которые имеют свою периодичность; от этих расстояний зависит, будет ли солнечное затмение полным или нет. Поэтому сарос дает возможность предсказать лишь то, что в определенный день должно случиться затмение, но будет ли оно полное, частное или кольцеобразное, а также можно ли будет его наблюдать в тех же местах, как и в предыдущий раз, утверждать нельзя.

              Смотря по тому, входит ли это в период 4 или 5 високосных лет.

Наконец, бывает и так, что незначительное частное затмение Солнца через 18 лет уменьшает свою фазу до нуля, т е. не наблюдается вовсе; и, наоборот, иной раз становятся видимыми небольшие частные затмения Солнца, прежде не наблюдавшиеся.

В наши дни астрономы не пользуются саросом. Капризные движения земного спутника изучены так хорошо, что затмения предвычисляются сейчас с точностью до секунды. Если бы предсказанное затмение не произошло, современные ученые готовы были бы допустить все, что угодно, только не ошибочность расчетов. Это удачно подмечено у Жюля Верна, который в романе «Страна мехов» рассказывает об астрономе, отправившемся в полярное путешествие для наблюдения солнечного затмения. Вопреки предсказанию, оно не произошло. Какой же вывод сделал из этого астроном? Он объявил окружающим, что ледяное поле, на котором они находятся, есть не материк, а плавучая льдина, вынесенная морским течением за полосу затмения. Утверждение это вскоре оправдалось. Вот пример глубокой веры в силу науки! 

<< | >>
Источник: Яков Исидорович Перельман. Занимательная астрономия. 2012

Еще по теме Почему затмения повторяются через 18 лет?:

  1. Борьба с русским духом и волей крестьян
  2. ПЛУТАРХ 920 О ЛИКЕ, ВИДИМОМ НА ДИСКЕ ЛУНЫ
  3. НАЦИОНАЛЬНЫЕ ИГРЫ
  4. 4. Д. В. ДАВЫДОВ ДНЕВНИК ПАРТИЗАНСКИХ ДЕЙСТВИИ 1812 ГОДА
  5. КОММЕНТАРИЙ
  6. Глава 3g Дж.-Д. Рэй ЕГИПЕТ В ПЕРИОД С 525 ПО 404 Г. ДО Н. Э.
  7. Глава 12 Квантовый квинтет
  8. ГЛАВА 4 Исцеление
  9. Глава 5 ХУДОЖЕСТВЕННАЯ ЛИТЕРАТУРА ШУЛЛЕРОВ