<<
>>

Звездные скопления - «школьные классы» небесных светил

  Иногда звезды образуют на небе группы, которые называются звездными скоплениями Некоторые из них были известны уже в древности. Так, например, греческие и римские поэты упоминают группу из семи звезд, Плеяды (рис.
2.5). Невооруженным глазом можно увидеть шесть из них. В действительности в этом скоплении есть по крайней мере 120 более слабых звезд и, вероятно, несколько сот еще более слабых. Все звезды Плеяд расположены в относительно небольшой области пространства. Свет пересекает это звездное скопление от одного края до другого всего за 30 лет. Понятно, что Плеяды-это очень плотная звездная ассоциация. Они не расположены неподвижно в пространстве, а все вместе летят в одном направлении с одинаковой скоростью. Близкое расположение этих звезд и одинаковая скорость их движения позволяют нам предположить, что звезды Плеяд имеют общую историю возникновения и развития. Иными словами, они образовались одновременно.

То же самое относится и к другому звездному скоплению, которое называют Гиадами. Это скопление также известно с глубокой древности. Еще увереннее мы можем говорить об общем происхождении звезд в так называемых шаровых звездных скоплениях, которые содержат от 50 тысяч до 50 миллионов звезд (рис. 2.6). В центральной области таких скоплений плотность расположения звезд примерно в 10 тысяч раз превышает плотность звезд в окрестности Солнца.

Рис. 2.5. Скопление Плеяды (семь звезд) Наиболее яркие звезды возбуждают свечение окружающих газовых масс. На снимке светящиеся облака перекрывают свет ближайших звезд. (Четыре луча, исходящие на снимке от ярких звезд, и светлые круги вокруг звезд обусловлены несовершенством фотографирующей системы.) Кроме ярких звезд, видимых невооруженным глазом, к этому скоплению относятся более 100 звезд. Они движутся в пространстве с одинаковой скорос тью и находятся предположительно на равном расстоянии друг от друга.


Рис. 2.6. Звездное скопление 47 в созвездии Тукана. Снимок получен с помощью зеркального телескопа (1 м) системы Шмидта на европейской южной обсерватории в Чили. В ггом скоплении звезды расположены так близко друг к другу, что в центральной области сливаются на снимке. Глядя на этот снимок, можно подумать, что звезды в центре такого скопления перекрываются, но на самом деле они расположены достаточно далеко друг от друга.

Какое удивительное зрелище открывается на звездном небе жителям планетной системы, принадлежащей к такому скоплению!

Как распределяются светимости и температуры поверхности у звезд звездных скоплений? Может быть, диаграммы

Рис. 2.7. Диаграмма Г-Р для звездного скопления Плеяды. Показаны только наиболее яркие звезды. Они образуют главную последовательность. В верхней части этой последовательности видно, что при светимостях примерно в 1000 раз больше солнечной звёзды на диаграмме уже отклоняются от главной последовательности вправо.

Г-Р таких скоплений похожи на диаграммы для ближайших соседей Солнца (см. рис. 2.2)? Наблюдаются ли среди них звезды главной последовательности? Если рассмотреть их диаграммы Г-Р, то мы увидим существенное отличие. Действительно, в некоторых звездных скоплениях почти все звезды принадлежат к главной последовательности, как, например, в Плеядах (диаграмма Г-Р этого скопления показана на рис. 2.7). Однако в большинстве скоплений только самые слабые звезды относятся к главной последовательности.

В этих скоплениях не вся полоса последовательности заполнена звездами. Этот ряд обрывается в области больших светимостей. Наиболее яркие звезды главной последовательности отсутствуют. Вместо них в звездных скоплениях есть красные звезды с большой светимостью: красные гиганты и сверхгиганты, которые показаны, в частности, на диаграмме Г-Р для скопления Гиад (рис. 2.8). Еще

Рис. 2.8. Диаграмма Г-Р для звездного скопления Гиады. Если главная последовательность в Плеядах (см. рис. 2.7) простирается примерно до светимости в 1000 раз больше солнечной, то в Гиадах главная последовательность обрывается ниже 100 солнечных светимостей. Более яркие звезды главной последовательности отсутствуют. В то же время на диаграмме Г-Р этого скопления наблюдается группа красных гигантов.

интереснее диаграмма Г-Р шарового звездного скопления, приведенная на рис. 2.9. На этой диаграмме звезды заполняют только участок главной последовательности, в то время как точки, соответствующие более ярким звездам, сдвинуты далеко вправо. Звезды разных скоплений можно нанести на одну и ту же диаграмму Г-Р. Такая диаграмма показана на рис. 2.10. На этом рисунке главная последовательность обозначена жирной линией, а при переходе к звездам наибольшей светимости линия, показанная на диаграмме, отклоняется направо вверх. Мы видим, что у разных звездных скоплений линия уходит вправо от главной последовательности в разных точках. Поскольку мы знаем, что при движении вверх по главной последовательности увеличивается масса звезд, то можно сказать, что в каждом звездном скоплении звезды, масса которых меньше опреде-

Рис. 2.9. Диаграмма Г-Р для звездного скопления М3 в созвездии Гончих Псов.

Это шаровое звездное скопление такого же типа, как скопление 47 Тукана (см. рис. 2.6). На главной последовательности еще находятся звезды, светимость которых всего в 5 раз больше солнечной. Основная часть более ярких звезд не лежит на главной последовательности. Позже мы еще вернемся в этой книге к звездам, которые примерно в 100 раз ярче Солнца. Эти звезды лежат в горизонтальной полосе, которая тянется по шкале температур от 5800 до 13 000 градусов. Ее поэтому называют горизонтальной ветвью.

ленного значения, лежат на главной последовательности, в то время как в области больших масс главная последовательность не заполнена. Этот факт и позволяет понять, как происходит эволюция звезд.

По мере того как звезда развивается со временем и стареет, изменяются и ее свойства. В частности, изменяются температура ее поверхности и светимость. Точка, которая обозначает звезду на диаграмме Г-Р, перемещается. Так, например, если звезда вначале была красным гигантом, а через миллионы лет превратилась в белый карлик, то соответствующая точка на диаграмме Г-Р сдвинется из правого верхнего угла в левый нижний. Если бы мы жили достаточно долго и могли в течение миллионов и миллиардов лет измерять характеристики звезд и наносить их на диаграмму

Рис. 2.10. Отклонение звезд различных скоплений от главной последовательности на диаграмме Г-Р (по данным Аллана Сандейджа). Штриховые линии показывают, где расположены звезды разных скоплений. Наиболее высоко на диаграмме простирается скопление в созвездии Персея. Затем оно отклоняется направо вверх. Наиболее короткую главную последовательность имеет шаровое звездное скопление М3. Она отклоняется направо уже в нижней части диаграммы. Стрелками слева показано, где лежат на главной последовательности звезды определенной массы. Числами возле стрелок отмечены массы в единицах массы Солнца М .

Таким образом, звездное скопление в созвездии Персея содержит звезды главной последовательности до 10-15 масс Солнца, в то время как наиболее тяжелые звезды главной последовательности шарового скопления М3 всего в 1,3 раза тяжелее Солнца.

Г-Р, то мы увидели бы, как перемещаются соответствующие точки на ней. Мы узнали бы, что в некоторых областях звезды находятся долго, а другие области пересекают очень быстро. Мы бы построили пути развития звезд на диаграмме Г-Р (их еще называют эволюционными треками).

Но перед нами есть только «мгновенный снимок». Мы

видим лишь, где расположены звезды на диаграмме в настоящее время[4]. При этом оказывается, что ближайшие соседи Солнца находятся на главной последовательности. Что это значит? Быть может, точки на диаграмме ГР особенно медленно перемещаются в полосе, где расположена главная последовательность? Может быть, они долго находятся в этой области? Тогда при наблюдении за звездами разного возраста окажется, что особенно много таких звезд расположено в этой полосе.

Этот эффект мы знаем из нашего повседневного опыта. Почему в мире взрослых больше, чем детей? Потому что детство продолжается всего около 15 лет, в то время как взрослым человек остается около 50 лет. Если собрать вместе группу людей разного возраста, например жителей нашего города, то окажется, что большинство из них находится на «взрослой стадии развития». Возникает вопрос: может быть, на главной последовательности звезды находятся достаточно долго?

Вспомним, что и Солнце расположено на главной последовательности. Мы знаем, что за многие миллиарды лет Солнце относительно мало изменилось и все это время оно принадлежит к главной последовательности. Мы видели, что энергия, запасенная в водороде солнечных недр, позволяет очень долго поддерживать его излучение. Может быть, и все звезды главной последовательности светят за счет превращения водорода в гелий? Может быть, и они, имея такой источник энергии, очень долго остаются неизменными, и по этой причине так плотно заполнена звездами полоса главной последовательности на диаграмме Г-Р?

Предположим, что все звезды главной последовательности светят за счет одного и того же энергетического источника: превращения водорода в гелий.

Раньше мы уже подсчитывали для Солнца и Спики, сколько могут светить эти звезды. Предположим, что водород составляет около 70% массы звезды и что ядерное горючее в звездных недрах начинает исчерпываться, когда в гелий превратится уже 10%

Рис. 2.11. Главная последовательность на диаграмме ГР. Слева показано стрелками, в каких точках диаграммы расположены звезды определенной массы (в единицах массы Солнца М ). Поскольку масса Солнца определяет запасы ядерного горючего^ то, зная для каждой точки главной последовательности светимость звезд, можно определить время, в течение которого звезда, расположенная в определенном месте главной последовательности, сможет светить за счет превращения водорода в гелий. Эти отрезки времени отмечены стрелками справа. Звезды, которые более чем в 39 раз тяжелее Солнца, исчерпывают свой водород уже за 1 миллион лет. Звезды в 2 раза легче Солнца могут светить целых 100 миллиардов лет. Сравнение с рис. 2.10 позволяет определить возраст звездных скоплений.

водорода. Тогда мы получим, что продолжительность жизни Солнца составит примерно 7 миллиардов лет, в то время как Спика, масса которой больше солнечной в 10 раз, а светимость в 10 тысяч раз, будет светить с неизменной силой всего несколько миллионов лет. Такие же оценки можно провести для любой звезды главной последовательности. При этом мы узнаем, сколько времени ее светимость будет поддерживаться за счет реакций превращения водорода в

гелий. Возьмем для примера какую-либо звезду на главной последовательности, показанной на рис. 2.3. По диаграмме Г-Р мы можем определить ее светимость, а по соотношению между светимостью и массой для звезд главной последовательности (рис. 2.4) вычислим ее массу, которая соответствует известной величине ее светимости. Если сравнить величину ядерной энергии, запасенной в данном количестве звездного вещества, с болометрической светимостью звезды (а это количество энергии, излучаемой в космическое пространство за одну секунду), то мы узнаем время, в течение которого может поддерживаться эта светимость. На рис. 2.11 возле главной последовательности обозначены времена жизни звезд, вычисленные таким способом. Данные, приведенные выше для Спики, тоже помещены на рисунке. Мы видим, что чем больше масса звезды на главной последовательности, тем быстрее отдает она свою энергию и тем короче время, в течение которого она светит за счет ядерного горения водорода.

Когда всю жизнь занимаешься звездами, начинаешь замечать, как велико сходство между ними и людьми. Вот и здесь мы видим, что чем больше масса, тем короче продолжительность жизни! 

<< | >>
Источник: Киппенхан Р.. 100 миллиардов солнц: Рождение, жизнь и смерть звезд. 1990

Еще по теме Звездные скопления - «школьные классы» небесных светил:

  1. Звездные скопления - «школьные классы» небесных светил