<<
>>

Искусственные нейронные сети. 

  Наиболее сложными, но и наиболее гибкими системами искусственного интеллекта являются искусственные нейронные сети (ИНС). Область их применения это автоматизация процессов распознавания образов, адаптивное управление, аппроксимация функционалов, прогнозирование, создание экспертных систем, организация ассоциативной памяти и многие другие приложения.
С помощью ИНС можно, например, предсказывать показатели биржевого рынка, выполнять распознавание оптических или звуковых сигналов, создавать самообучающиеся системы, способные управлять автомашиной при парковке или синтезировать речь по тексту, ну и конечно работать с огромными массивами слабоструктурированных мониторинговых данных.

Основная идея создания ИНС в том, чтобы, имея в распоряжении вычислительную силу компьютера, использовать лучшие свойства человеческого мозга. Приведём перечень важнейших свойств биологических нейронных систем.

Важнейшие свойства биологических нейросетей: Параллельность обработки информации. Каждый нейрон формирует свой выход только на основе своих входов и собственного внутреннего состояния под воздействием общих механизмов регуляции нервной системы. Способность к полной обработке информации. Все известные человеку задачи решаются нейронными сетями. К этой группе свойств относятся ассоциативность (сеть может восстанавливать полный образ по его части), способность к классификации, обобщению, абстрагированию и множество других. Они до конца не систематизированы. Самоорганизация. В процессе работы биологические НС самостоятельно, под воздействием внешней среды, обучаются решению разнообразных задач. Неизвестно никаких принципиальных ограничений на сложность задач, решаемых биологическими нейронными сетями. Нервная система сама формирует алгоритмы своей деятельности, уточняя и усложняя их в течение жизни. Человек пока не сумел создать систем, обладающих самоорганизацией и самоусложнением.

Это свойство НС рождает множество вопросов. Ведь каждая замкнутая система в процессе развития упрощается, деградирует. Следовательно, подвод энергии к нейронной сети имеет принципиальное значение. Почему же среди всех диссипативных (рассеивающих энергию) нелинейных динамических систем только у живых существ, и, в частности, биологических нейросетей проявляется способность к усложнению? Какое принципиальное условие упущено человеком в попытках создать самоусложняющиеся системы? Биологические НС являются аналоговыми системами. Информация поступает в сеть по большому количеству каналов и кодируется по пространственному принципу: вид информации определяется номером нервного волокна, по которому она передается. Амплитуда входного воздействия кодируется плотностью нервных импульсов, передаваемых по волокну.

5. Надежность. Биологические НС обладают фантастической надежностью: выход из строя даже 10% нейронов в нервной системе не прерывает ее работы. По сравнению с последовательными ЭВМ, основанными на принципах фон Неймана, где сбой одной ячейки памяти или одного узла в аппаратуре приводит к краху системы.

Современные искусственные НС по сложности и «интеллекту» приближаются к нервной системе таракана, но уже сейчас демонстрируют ценные свойства:

1.              Обучаемость. Выбрав одну из моделей НС, создав сеть и выполнив алгоритм обучения, мы можем обучить сеть решению задачи, которая ей по силам. Нет никаких гарантий, что это удастся сделать при выбранных сети, алгоритме и задаче, но если все сделано правильно, то обучение бывает успешным. Способность к обобщению. После обучения сеть становится нечувствительной к малым изменениям входных сигналов (шуму или вариациям входных образов) и дает правильный результат на выходе. Способность к абстрагированию. Если предъявить сети несколько искаженных вариантов входного образа, то сеть сама может создать на выходе идеальный образ, с которым она никогда не встречалась. Параллельность обработки и реализуемость НС.

Быстродействие современных ЭВМ составляет около 100 Mflops (flops операция с плавающей запятой в секунду). Время прохождения одного нервного импульса около 1 мс, и можно считать, что производительность одного нейрона порядка 10 flops. Эквивалентное быстродействие мозга составит 1012 flops. Если рассмотреть задачи, решаемые мозгом, и подсчитать требуемое количество операций для их решения на обычных ЭВМ, то получим оценку быстродействия до 1012-1014 flops. Разница в производительности между обычной ЭВМ и мозгом – 4-6 порядков! Чем это объясняется?

Несмотря на существенные различия, отдельные типы ИНС обладают несколькими общими чертами. Во-первых, основу каждой ИНС составляют относительно простые, в большинстве случаев – однотипные, элементы (ячейки), имитирующие работу нейронов мозга. Каждый нейрон характеризуется своим текущим состоянием по аналогии с нервными клетками головного мозга, которые могут быть возбуждены или заторможены. Он обладает группой синапсов – однонаправленных входных связей, соединенных с выходами других нейронов, а также имеет аксон – выходную связь данного нейрона, с которой сигнал (возбуждения или торможения) поступает на синапсы следующих нейронов.

Каждый синапс характеризуется величиной синаптической связи или ее весом, который по физическому смыслу эквивалентен электрической проводимости. Текущее состояние нейрона определяется, как взвешенная сумма его входов.

Ограничения модели нейрона Вычисления выхода нейрона предполагаются мгновенными, не вносящими задержки. Непосредственно моделировать динамические системы, имеющие «внутреннее состояние», с помощью таких нейронов нельзя. В модели отсутствуют нервные импульсы. Нет модуляции уровня сигнала плотностью импульсов, как в нервной системе. Не появляются эффекты синхронизации, когда скопления нейронов обрабатывают информацию синхронно, под управлением периодических волн возбуждения-торможения. Нет четких алгоритмов для выбора функции активации. Нет механизмов, регулирующих работу сети в целом (пример - гормональная регуляция активности в биологических нервных сетях).

Чрезмерная формализация понятий: «порог», «весовые коэффициенты». В реальных нейронах нет числового порога, он динамически меняется в зависимости от активности нейрона и общего состояния сети. Весовые коэффициенты синапсов тоже не постоянны. «Живые» синапсы обладают пластичностью и стабильностью: весовые коэффициенты настраиваются в зависимости от сигналов, проходящих через синапс. Существует большое разнообразие биологических синапсов. Они встречаются в различных частях клетки и выполняют различные функции. Тормозные и возбуждающие синапсы реализуются в данной модели в виде весовых коэффициентов противоположного знака, но разнообразие синапсов этим не ограничивается. Дендро-дендритные, аксо-аксональные синапсы не реализуются в модели. В модели не прослеживается различие между градуальными потенциалами и нервными импульсами. Любой сигнал представляется в виде одного числа.

Способность к обучению является фундаментальным свойством мозга. В контексте ИНС процесс обучения может рассматриваться как настройка архитектуры сети и весов связей для эффективного выполнения специальной задачи. Обычно нейронная сеть должна настроить веса связей по имеющейся обучающей выборке. Функционирование сети улучшается по мере настройки весовых коэффициентов. Свойство сети обучаться на примерах делает их более привлекательными по сравнению с системами, которые следуют определенной системе правил функционирования, сформулированной экспертами.

Для конструирования процесса обучения, прежде всего, необходимо иметь модель внешней среды, в которой функционирует нейронная сеть – знать доступную для сети информацию. Эта модель определяет парадигму обучения. Во-вторых, необходимо понять, как модифицировать весовые параметры сети – какие правила обучения управляют процессом настройки. Алгоритм обучения означает процедуру, в которой используются правила обучения для настройки весов. В зависимости от того, как решена проблема обучения мы получаем сеть с определёнными качествами.

Существуют три парадигмы обучения: «с учителем», «без учителя» (самообучение) и смешанная.

В первом случае нейронная сеть располагает правильными ответами (выходами сети) на каждый входной пример. Веса настраиваются так, чтобы сеть производила ответы как можно более близкие к известным правильным ответам. Усиленный вариант обучения с учителем предполагает, что известна только критическая оценка правильности выхода нейронной сети, но не сами правильные значения выхода. Обучение без учителя не требует знания правильных ответов на каждый пример обучающей выборки. В этом случае раскрывается внутренняя структура данных или корреляции между образцами в системе данных, что позволяет распределить образцы по категориям. При смешанном обучении часть весов определяется посредством обучения с учителем, в то время как остальная получается с помощью самообучения.

Классификация ИНС весьма обширна. Выделяют однослойный персептрон, многослойный персептрон, самоорганизующиеся сети Кохонена, сети Хопфилда, сети Хэмминга и др. Многие алгоритмы ИНС реализованы в соответствующих программных продуктах и активно применяются в сложнейших методах анализа. 

<< | >>
Источник: Горшков М.В.. Экологический мониторинг. Учеб. пособие. 2010

Еще по теме Искусственные нейронные сети. :

  1. Ш. ОРГАНОПРОЕКЦИЯ
  2. ДОКУМЕНТ КАК ОСНОВА ФУНКЦИОНИРОВАНИЯ БИБЛИОТЕКИ И ИНФОРМАЦИЯ
  3. ТВ — как вариант исцеления. Два подхода
  4. Глава 3 Поэзия, мозг и время Ф. Тернер ', Э. Пёппель
  5. Литература
  6. § 3.1. Сетевой подход в социальных науках: базовые понятия и принципы
  7. § 3.2. Специальное программное обеспечение сетевых исследований
  8. Наукоемкое производство
  9. Геолого-математические модели
  10. Искусственные нейронные сети. 
  11. Гибридные интеллектуальные системы.
  12. Программное обеспечение экспертно-информационной системы
  13. ОБ ОПЫТЕ ОРГАНИЗАЦИИ НАУЧНОЙ РАБОТЫИ ДОСТИЖЕНИЯХ ДНЕПРОПЕТРОВСКОГОНАЦИОНАЛЬНОГО УНИВЕРСИТЕТАИМ. ОЛЕСЯ ГОНЧАРА
  14. Проект “Электронный нос”
  15. §3. Иерархическая структура социальности в информационном обществе
  16. Применение осознаваемых и неосознаваемых знаний при усвоении искусственной грамматики
  17. Список литературы