<<
>>

Загрязнение почв тяжелыми металлами. 

  За почти 30-летний период исследований состояния экосистем, загрязненных тяжелыми металлами, получено множество свидетельств интенсивности локального загрязнения металлами почв. Зона сильного загрязнения сформировалась в пределах 3—5 км от Череповецкого комбината черной металлургии (Вологодская обл.).
В окрестностях Среднеуральского металлургического комбината загрязнение аэрозольными выпадениями охватило территорию площадью более 100 тыс. га, причем 2—2,5 тыс. га полностью лишены растительного покрова. В ландшафтах, подверженных воздействию выбросов Чемкентского свинцового комбината, наибольший эффект наблюдается в промзоне, где концентрация свинца в почве на 2—3 порядка выше фоновой.

Отмечается загрязнение не только РЬ, но и Мп, поступление которого носит вторичный характер и может быть вызвано переносом из деградированной почвы. Деградация почв наблюдается в загрязненных почвах окрестностей завода «Электроцинк» в предгорьях Северного Кавказа. Сильное загрязнение проявляется в 3—5- километровой зоне от завода. Аэрозольные выбросы свинцовоцинкового комбината Усть-Каменогорска (Северный Казахстан) обогащены металлами: до недавнего времени ежегодные выбросы РЬ составляли 730 т свинца, Zn 370 т цинка, 73 000 т серной кислоты и серного ангидрида. Выбросы аэрозолей и сточных вод привели к созданию зоны сильного загрязнения с превышением основных групп поллютантов, на порядки превышающие фоновые уровни содержания металлов. Загрязнение почв металлами часто сопровождается закислением почв.

Когда почвы подвержены аэрозольному загрязнению, важнейшим фактором, влияющим на состояние почв, является удаленность от источника загрязнения. Например, максимальное загрязнение растений и почв свинцом, поступающим с выхлопными газами автомобилей, прослеживается чаще всего в 100—200-метровой зоне от магистрали (табл. 8.12).

Таблица 8.12

Распределение свинца в травянистой растительности и почве (мг/кг) вблизи автомагистрали

(Фортескью, 1985)

Образец

Расстояние от обочины, м

2,5

4,5

7,5

11,5

16,0

36,0

Трава

13,9

12,2

14,9

7,7

4,6

з,з

Почва, глубины, см

0-6

772

410

118

74

54

40

6-12

464

28

78

14

22

24

12-18

36

18

16

6

16

18

Влияние аэрозольных выбросов промышленных предприятий, обогащенных металлами, проявляется чаще всего в радиусе 15— 20 км, реже — в 30 км от источника загрязнения.

Имеют значение такие технологические факторы, как высота выброса аэрозолей из труб заводов. Зона максимального загрязнения почв образуется в пределах расстояния, равного 10—40-кратной высоте промышленного выброса высокого и горячего и 5—20-кратной высоте низкого холодного выброса.

Существенное влияние оказывают метеорологические условия. В соответствии с направлением преобладающих ветров формируется ареал преобладающей части загрязненных почв. Чем больше скорость ветра, тем меньше загрязняются почвы ближних окрестностей предприятия, тем интенсивнее перенос загрязняющих веществ. Наибольшие концентрации загрязняющих веществ в атмосфере ожидаются для низких холодных выбросов при скорости ветра 1—2 м/с, для высоких горячих выбросов — при скорости ветра 4—7 м/с. Влияют температурные инверсии: в инверсионных условиях ослабляется турбулентный обмен, что ухудшает рассеивание аэрозолей выбросов и ведет к загрязнению в импактной зоне. Сказывается влажность воздуха: при высокой влажности уменьшается рассеяние загрязняющих веществ, так как при конденсации они могут из газообразной формы переходить в менее миграционно-способную жидкую фазу аэрозолей, далее они удаляются из атмосферы в процессе осаждения. Следует учитывать, что время пребывания во взвешенном состоянии загрязняющих частиц аэрозоля и соответственно дальность и скорость их переноса зависят и от физико-химических свойств аэрозолей: частицы более крупные оседают быстрее, чем тонкодисперсные.

В зоне воздействия выбросов промышленных предприятий, прежде всего предприятий цветной металлургии, являющихся самым мощным поставщиком тяжелых металлов, меняется состояние ландшафта в целом. Например, ближайшие окрестности свинцовоцинкового завода в Приморье превратились в техногенную пустыню. Они полностью лишены растительности, почвенный покров уничтожен, поверхность склонов сильно эродирована. На расстоянии более 250 м сохранился изреженный лес из дуба монгольского без примеси других пород, травянистый покров полностью отсутствует.

В верхних горизонтах распространенных здесь бурых лесных почв содержание металлов превысило фоновые уровни и кларк в десятки и сотни раз (табл. 8.12).

Таблица 8.13

Содержание и коэффициенты концентрирования металлов (А) в профиле загрязненной бурой лесной почвы

(Глазовская, Горюнова, 1983)

Горизонт

РЬ

Zn

Cd

Си

мг/кг

мг/кг

мг/кг

мг/кг

к

АО

11000

688

788

9,5

19

146

377

8

А1

6700

419

426

5

19

146

225

5

В

50

3

100

1

1

8

7

0,1

Судя по содержанию металлов в составе вытяжки 1н. HN03 из этих загрязненных почв, основная часть металлов в них находится в подвижном, непрочно связанном состоянии. Это общая закономерность для загрязненных почв. В данном случае это привело к повышению миграционной способности металлов и увеличению на порядки концентрации металлов в лизиметрических водах. Выбросы данного предприятия цветной металлургии наряду с обогащением металлами имели повышенное содержание оксидов серы, что способствовало подкислению осадков и подкислению почв, pH их снизился на единицу.

В почвах, загрязненных фторидами, напротив, уровень pH почв повышался, что способствовало увеличению подвижности органического вещества: окисляемость водных вытяжек из почв, загрязненных фторидами, повысилась в несколько раз (табл.

8.14).

Таблица 8.14

Изменение уровня pH и окисляемости водной вытяжки из почв, искусственно загрязненных фторидами натрия

(Моршина и др., 1985)

Доза F, мг/кг

Дерново-подзолистая

почва

Чернозем

Серозем

рн

pH

pH

0

7,0

2,7

8,2

2,1

8.1

4,4

500

7,4

2,8

8,5

3,1

8,7

5,4

1500

7,6

5,5

9,0

3,1

10,0

8,6

5000

8,2

10,3

9,9

15,0

10,2

16,0

Поступившие в почву металлы распределяются между твердыми и жидкой фазами почвы. Органические и минеральные компоненты твердых фаз почвы удерживают металлы за счет разных механизмов с различной прочностью. Эти обстоятельства имеют важное экологическое значение. От того, как много будет поглощено почвами металлов и как прочно они будут удержаны, зависит способность загрязненных почв влиять на состав и свойства вод, растений, воздуха, способность тяжелых металлов к миграции, От этих же факторов зависит буферная способность почв по отношению к загрязняющим веществам, способность их выполнять в ландшафте барьерные функции.

Количественные показатели поглотительной способности почв в отношении различных химических веществ определяют чаще всего в модельных экспериментах, приводя изучаемые почвы во взаимодействие с различными дозами контролируемых веществ.

Возможны разные варианты постановки этих экспериментов в полевых или лабораторных условиях.

Лабораторные опыты проводят в статических или динамических условиях, приводя исследуемую почву во взаимодействие с растворами, содержащими переменные концентрации металлов. По результатам опыта строят изотермы сорбции металлов стандартным методом, анализируя закономерности поглощения с использованием уравнений Ленгмюра или Фрейндиха.

Накопленный опыт исследования поглощения ионов различных металлов почвами с различными свойствами свидетельствует о наличии ряда общих закономерностей. Количество поглощенных почвой металлов и прочность их удерживания являются функцией концентрации металлов в растворах, взаимодействующих с почвой, а также свойств почвы и свойств металла, влияют также и условия постановки эксперимента. При малых нагрузках почва способна поглотить загрязняющие вещества полностью вследствие процессов ионного обмена, специфической сорбции. Эта способность проявляется тем сильнее, чем большей дисперсностью характеризуется почва, чем выше в ней содержание органических веществ. Не меньшее значение имеет реакция почв: повышение pH способствует увеличению поглощения почвами тяжелых металлов.

Повышение нагрузки ведет к снижению поглощения. Внесенный металл поглощается почвой не полностью, но между концентрацией металла в растворе, взаимодействующим с почвой, и количеством поглощенного металла имеет место прямолинейная зависимость. Последующее повышение нагрузки ведет к дальнейшему уменьшению количества поглощенного почвой металла вследствие ограниченного количества позиций в обменно-сорбционном комплексе, способных к обменному и безобменному поглощению ионов металлов. Ранее наблюдавшаяся прямолинейная зависимость между концентрацией металлов в растворе и их количеством, поглощенным твердыми фазами, нарушается. На следующем этапе возможности твердых фаз почвы поглощать новые дозы ионов металлов почти полностью исчерпываются, увеличение концентрации металла во взаимодействующем с почвой растворе практически перестает влиять на поглощение металла.

Способность почв поглощать ионы тяжелых металлов в широком интервале их концентраций во взаимодействующем с почвой растворе свидетельствует о полифункциональности столь гетерогенного природного тела, каким является почва, о разнообразии механизмов, обеспечивающих ее способность удерживая металлы, защищать от загрязнения сопредельные с почвой среды. Но очевидно, что эта способность почвы не беспредельна.

Экспериментальные данные позволяют определить показатели максимальной поглотительной способности почв в отношении металлов. Как правило, количество поглощенных ионов металлов значительно меньше емкости катионного обмена почв. Например, максимальная сорбция Cd, Zn, Pb дерново-подзолистыми почвами

Белоруссии колеблется в пределах 16—43% от ЕКО в зависимости от уровня pH, содержания гумуса и вида металла (Головатый, 2002). Поглотительная способность у суглинистых почв выше, чем у супесчаных, а у высоко гумусированных выше, чем у малогумусных. Влияет и вид металла. Максимальное количество элементов, поглощенных почвой специфически, падает в ряду Pb, Си, Zn, Cd.

Экспериментально можно определить не только количество поглощенных почвами металлов, но и прочность их удерживания почвенными компонентами. Прочность фиксации тяжелых металлов почвами устанавливается на основе их способности экстрагироваться из загрязненных почв различными реагентами. Начиная с середины 1960-х гг. предложено множество схем экстракционного фракционирования соединений металлов из почв, донных отложений. Объединяет их общая идеология. Все схемы фракционирования предполагают прежде всего разделить соединения металлов, удерживаемые почвой, на непрочно и прочно связанные с почвенной матрицей (гл. 5). Они предполагают также среди прочно связанных соединений тяжелых металлов выделить их соединения, предположительно связанные с главными носителями тяжелых металлов: силикатными минералами, оксидами и гидроксидами Fe и Мп, органическими веществами. Среди непрочно связанных соединений металлов предполагается выделение групп соединений металлов, удерживаемых почвенными компонентами за счет различных механизмов (обменные, специфически сорбированные, связанные в комплексы) (Кузнецов, Шимко, 1990; Минкина и др. 2008).

Различаются применяемые схемы фракционирования соединений металлов в загрязненных почвах рекомендуемыми экстрагентами. Все экстрагенты предложены на основании их возможности переводить в раствор предполагаемую группу соединений металлов, однако они не могут обеспечить строгую селективность извлечения названных групп соединений тяжелых металлов. Тем не менее накопившиеся данные о фракционном составе соединений металлов в загрязненных почвах позволяют выявить ряд общих закономерностей.

Для разных ситуаций установлено, что при загрязнении почв в них меняется соотношение прочно и непрочно связанных соединений металлов. Одним из примеров являются показатели состояния Си, Pb, Zn в загрязненном черноземе обыкновенном Нижнего Дона (табл. 8.15).

Способность и к прочному, и непрочному удерживанию тяжелых металлов проявили все почвенные компоненты. Ионы тяжелых металлов прочно фиксируются глинистыми минералами, оксидами и гидроксидами Fe и Мп, органическими веществами (Минкина и др., 2008). Важно то, что при увеличении общего содержания металлов в загрязненных почвах в 3—4 раза, соотношение соединений металлов в них изменилось в сторону увеличения доли непрочно связанных форм. В свою очередь и в их составе произошло аналогичное изменение соотношения составляющих их соединений: уменьшилась доля менее подвижных из них (специфически сорбированных) за счет увеличения доли обменных форм металлов и образующих комплексы с органическими веществами (табл. 8.15).

Таблица 8.15

Изменение соотношения соединений Си, Pb, Zn в черноземе обыкновенном при искусственном загрязнении его солями металлов

Доза

внесения

металла,

Общее содержание Me* (мг/ кг) н соотношение непрочно (НС) и прочно (ПС) связанных соединений Me (% от общего содержания)

Непрочно связанные соединения Me (HQ (мг/кг) н соотношение составляющих их соединений (% от количества НС)

мг/кг

Общее содер

НС,

ПС,

НС,

Обмен

Комплекс

Специфиче

жание, мг/кг

%

%

мг/кг

ные, %

ные, %

ски сорбиро

ванные, %

медь

3

46

9

91

4

9

14

77

10

53

11

89

6

15

9

76

30

73

18

82

13

9

8

83

55

100

20

80

20

7

8

85

100

135

27

73

36

12

19

69

свинец

6

33

12

88

4

20

17

63

25

42

12

88

5

16

14

70

32

60

12

88

7

20

13

67

55

78

14

86

11

30

18

52

100

127

28

72

36

23

16

61

цинк

23

93

20

80

19

6

10

84

50

119

30

70

36

7

4

89

75

140

38

62

53

8

1

91

100

165

42

58

69

11

10

79

300

365

31

69

112

23

26

51

Me — металл.

Наряду с повышением общего содержания тяжелых металлов в загрязненных почвах происходит увеличение относительного содержания более подвижных соединений металлов. Это свидетельствует об ослаблении буферности почв по отношению к металлам, их способности защищать сопредельные среды от загрязнения.

В загрязненных металлами почвах существенно меняются важнейшие микробиологические и химические свойства. Ухудшается состояние микробоценоза. На загрязненных почвах происходит отбор более выносливых видов, а менее устойчивые виды микроорганизмов выбывают. При этом могут появиться новые виды микроорганизмов, обычно отсутствующие на незагрязненных почвах. Следствием этих процессов является снижение биохимической активности почв. Установлено, что в загрязненных металлами почвах снижается нитрифицирующая активность, в результате чего активно развивается грибной мицелий и уменьшается количество сапрофитных бактерий. В загрязненных почвах падает минерализация органического азота. Выявлено влияние загрязнения металлами на ферментативную активность почв: снижение в них уреазной и де- гидрогеназной, фосфатазной, аммонифицирующей активности.

Загрязнение металлами влияет на фауну и микрофауну почвы. При повреждении лесного покрова в лесной подстилке падает численность насекомых (клещей, бескрылых насекомых), при этом количество пауков и многоножек может оставаться стабильным. Страдают и почвенные беспозвоночные, часто наблюдается гибель дождевых червей.

Ухудшаются физические свойства почв. Почвы теряют свойственную им структуру, в них уменьшается общая порозность, снижается водопроницаемость.

Изменяются химические свойства почв под влиянием загрязнения. Эти изменения оцениваются с помощью двух групп показателей: биохимических и педохимических (Глазовская, 1976). Называют эти показатели также прямыми и косвенными, специфическими и неспецифическими.

Биоиохимические показатели отражают действие загрязняющих веществ на живые организмы, их прямое специфическое действие. Оно обусловлено влиянием химических веществ на биохимические процессы в растениях, микроорганизмах, позвоночных и беспозвоночных обитателях почвы. Результатом загрязнения является снижение биомассы, урожая растений и его качества, возможно, гибель. Происходит подавление почвенных микроорганизмов, снижение их численности, разнообразия, биологической активности. Биохимическими показателями состояния загрязненных почв служат показатели общего содержания в них загрязняющих веществ (в данном случае тяжелых металлов), показатели содержания подвижных соединений металлов, с которыми непосредственно связано токсическое действие металлов на живые организмы.

Педохимическое (косвенное, неспецифическое) действие загрязняющих веществ (в данном случае металлов) обусловлено их влиянием на почвенно-химические условия, которые, в свою очередь, влияют на условия обитания в почвах живых организмов и на их состояние. Важнейшее значение имеют кислотно-основные, окислительно-восстановительные условия, гумусное состояние почв, ионо-обменные свойства почв. Например, газообразные выбросы, содержащие оксиды серы и азота, поступая в почву в форме азотной и серной кислот, вызывают снижение pH почв на 1—2 единицы. В меньшей степени способствуют понижению pH почв гидролитически кислые удобрения. Подкисление почв, в свою очередь, ведет к повышению подвижности различных химических элементов в почвах, например, марганца, алюминия. Подкисление почвенного раствора способствует изменению соотношения различных форм химических элементов в пользу увеличения доли более токсичных соединений (например свободных форм алюминия). Отмечено снижение подвижности фосфора в почве при избыточном количестве в ней цинка. Снижение подвижности соединений азота является результатом нарушения при загрязнении почв их биохимической активности.

Изменение кислотно-основных условий и ферментативной активности сопровождается ухудшением гумусного состояния загрязненных почв, в них отмечено уменьшение содержания гумуса, изменение его фракционного состава. Результатом является изменение ионообменных свойств почв. Например, отмечено, что в черноземах, загрязненных выбросами медного комбината, снизилось содержание обменных форм кальция и магния, изменилась степень насыщенности почв основаниями.

Очевидна условность подобного разделения эффектов влияния загрязняющих веществ на почвы. Хлориды, сульфаты, нитраты оказывают не только педохимическое действие на почвы. Они могут отрицательно влиять на живые организмы и непосредственно, нарушая ход биохимических процессов в них. Например, сульфаты, поступившие в почву в количестве 300 кг/га и больше, могут накапливаться в растениях в количествах, превышающих их допустимый уровень. Загрязнение почв фторидами натрия ведет к поражению растений как под влиянием их токсического воздействия, так и под влиянием вызванной ими сильнощелочной реакции.

Рассмотрим на примере ртути взаимосвязь природных и техногенных соединений металла в различных звеньях биогеоценоза, их совместное влияние на живые организмы, в том числе на здоровье человека.

Ртуть является одним из наиболее опасных металлов, загрязняющих природные среды. Мировой уровень ежегодной добычи ртути составляет около 10 тыс. т. Выделяют три основные группы отраслей промышленности с высокой эмиссией ртути и ее соединений в окружающую среду: Предприятия цветной металлургии, производящие металлическую ртуть из ртутных руд и концентратов, а также путем вторичной переработки различных ртутьсодержащих продуктов; Предприятия химической и электротехнической промышленности, где ртуть используется в качестве одного из элементов производственного цикла (например, при амальгамировании, с которым связано производство ртути, цветных металлов); Предприятия, добывающие и перерабатывающие руды различных металлов (помимо ртутных), в том числе путем термической обработки рудного сырья; предприятия, производящие цемент, флюс для металлургии; производства, сопровождающиеся сжиганием углеводородного топлива (нефть, газ, уголь). В целом это те производства, где ртуть является попутным компонентом, иногда даже в заметных количествах.

Вносят вклад в загрязнение ртутью также предприятия черной металлургии и химико-фармацевтической промышленности, производство тепловой и электрической энергии, производство хлора и каустической соды, приборостроение, извлечение драгоценных металлов из руд (например, предприятия золотодобывающей промышленности) и пр. В сельскохозяйственном производстве применение средств защиты растений от вредителей и болезней ведет к распространению ртутьсодержащих соединений.

В процессе добычи, переработки и использования теряется около половины производимой ртути. Поступают ртутьсодержащие соединения в окружающую среду с газовыми выбросами, сточными водами, твердыми жидкими, пастообразными отходами. Наиболее значительные потери происходят при пирометаллургическом способе ее получения. Ртуть теряется с огарками, отходящими газами, пылью и вентиляционными выбросами. Содержание ртути в углеводородных газах может достигать 1—3 мг/м3, в нефти 2—10'3 %. В атмосфере велика доля летучих форм свободной ртути и метилр- тути, Hg° и (CH3)2Hg.

Обладая продолжительным временем существования (от нескольких месяцев до трех лет), эти соединения могут переноситься на большие расстояния. Только незначительная часть элементарной ртути сорбируется на мелкодисперсных пылеватых частицах и в процессе сухого осаждения достигает земной поверхности. Около 10—20 % ртути переходит в состав водорастворимых соединений и выпадает с осадками, далее поглощается почвенными компонентами, донными отложениями.

С земной поверхности часть ртути вследствие испарения частично вновь поступает в атмосферу, пополняя запас ее летучих соединений.

Особенности круговорота ртути и ее соединений в природе обусловлены такими свойствами ртути, как ее летучесть, устойчивость во внешней среде, растворимость в атмосферных осадках, способность к сорбции почвами и взвесью поверхностных вод, способность к биотическим и абиотическим превращениям (Кузубова и др., 2000). Техногенные поступления ртути нарушают природный цикл металла и создают угрозу для экосистемы.

Среди соединений ртути наибольшей токсичностью отличаются органические производные ртути, прежде всего метилртуть, диметилртуть. Внимание к ртути в окружающей среде проявилось в 1950-е гг. Тогда общую тревогу вызвали массовые отравления людей, проживающих на берегах залива Минамата (Япония), основным занятием которых была ловля рыбы, которая была основным продуктом их питания. Когда стало известно, что причиной отравления явилось загрязнение вод залива промышленными сточными водами с повышенным содержанием ртути, загрязнение экосистемы ртутью привлекло внимание исследователей многих стран.

В природных водах содержание ртути невелико, средняя концентрация в водах зоны гипергенеза составляет 0,1 * 10'4 мг/л, океана — 3 х 10'5 мг/л. Ртуть в водах присутствует в одновалентном и двухвалентном состоянии, в восстановительных условиях находится в форме незаряженных частиц. Отличает ее способность к комплек- сообразованию с различными лигандами. В водах среди соединений ртути доминируют гидроксо-, хлоридные, лимоннокислые, фульватные и другие комплексы. Метильные производные ртути являются наиболее токсичными.

Образование метилртути происходит главным образом в толщах вод и осадков пресных и морских вод. Поставщиком метильных групп для ее образования являются присутствующие в природных водах различные органические вещества и продукты их деструкции. Образование метилртути обеспечивают взаимосвязанные биохимические и фотохимические процессы. Ход процесса зависит от температуры, окислительно-восстановительных и кислотно-основных

Рис. 8.1. Биохимический цикл ртути в водоемах (Кузубова и др., 2000)

условий, от состава микроорганизмов и их биологической активности. Интервал оптимальных условий для образования метилрту- ти довольно широк: pH 6—8, температура 20—70 °С. Способствует активизации процесса повышение интенсивности солнечного излучения. Процесс метилирования ртути является обратимым, он сопряжен с процессами деметилирования (рис. 8.1).

Образование наиболее токсичных соединений ртути отмечается в водах новых искусственных водохранилищ. В них оказываются затопленными массы органического материала, поставляющего в большом количестве водорастворимые органические вещества, которые включаются в процессы микробного метилирования. Одним из продуктов этих процессов являются метилированные формы ртути. Конечным результатом является накопление ме- тилртути в рыбе. Эти закономерности четко проявились в молодых водохранилищах США, Финляндии, Канады. Установлено, что максимальное накопление ртути в рыбе водохранилищ происходит через 5—10 лет после затопления, а возврат к естественным уровням их содержания может наступить не ранее 15—20 лет после затопления.

Метилпроизводные ртути активно усваиваются живыми организмами. Для ртути характерен очень высокий коэффициент накопления. Кумулятивные свойства ртути проявляются в увеличении ее содержания в ряду: фитопланктон—макрофитопланктон— планктоноядные рыбы—хищные рыбы—млекопитающие. Это отличает ртуть от многих других металлов. Период полувыведения ртути из организма оценивается месяцами, годами.

Сочетание высокой эффективности усвоения метилированных соединений ртути живыми организмами и низкой скорости их выведения из организмов ведет к тому, что именно в этой форме ртуть поступает по пищевым цепочкам и максимально накапливается в организме животных.

Наибольшая токсичность метилртути по сравнению с другими ее соединениями обусловлена рядом ее свойств: хорошей растворимостью в липидах, способствующей свободному проникновению в клетку, где она легко взаимодействует с белками. Биологическим следствием этих процессов являются мутагенные, эмбриотоксиче- ские, генотоксические и другие опасные изменения в организмах. Общепризнано, что для человека рыба и рыбные продукты являются преобладающими источниками метилртути. Токсическое ее действие на организм человека проявляется в основном в поражении нервной системы, зон коры головного мозга, ответственных за сенсорные, зрительные и слуховые функции.

В России в 1980-е годы были впервые проведены широкие комплексные исследования состояния ртути в биогеоценозе. Это был район бассейна реки Катунь, где планировалось строительство Ка- тунской ГЭС. Тревогу вызывало распространение в регионе горных пород, обогащенных ртутью, в пределах месторождения действовали ртутные рудники. Предупреждением звучали и результаты исследований, выполненных к тому времени в разных странах, свидетельствующие об образовании метилированных производных ртути в водах водохранилищ даже при отсутствии распространения рудных тел в регионе.

Следствием влияния природных и техногенных потоков ртути в районе предполагаемого строительства Катунской ГЭС явились повышенные концентрации ртути в почвах. Отмечена локализация ртутного загрязнения и в донных отложениях верхней части реки Катунь. Было составлено несколько прогнозов экологической обстановки в районе предполагаемого строительства ГЭС и создания водохранилища, но в связи с начавшейся перестройкой в стране работы в этом направлении были приостановлены.

<< | >>
Источник: Мотузова Г.В., Карпова Е.А.. Химическое загрязнение биосферы и его экологические последствия. Учебник.. 2013

Еще по теме Загрязнение почв тяжелыми металлами. :

  1. ОХРАНА АГРАРНЫХ ЛАНДШАФТОВ ОТ ЗАГРЯЗНЕНИЯ
  2. Биотестиоование загрязнений почвы
  3. Глава 10. Загрязнение почв тяжелыми металлами
  4. § 1. Городские почвы и их реабилитация
  5. 8.4. Загрязнение атмосферы, поверхностных води почв тяжелыми металлами
  6. Загрязнение атмосферы тяжелыми металлами.
  7. Загрязнение гидросферы тяжелыми металлами. 
  8. Загрязнение растений тяжелыми металлами. 
  9. Загрязнение почв тяжелыми металлами. 
  10. ЗАГРЯЗНЕНИЕ ГОРОДСКИХ ПРИРОДНО-ТЕХНОГЕННЫХ КОМПЛЕКСОВ
  11. 17. Деградация земельных (почвенных) ресурсов
  12. 1.2. Основные понятия о загрязнении окружающей среды
  13. 2.4.3. Отбор проб почв
  14. 5.4. Прогноз загрязнения почв
  15. 5.4.2. Контроль загрязнения почв вредными веществами промышленного происхождения
  16. 3.6. Организация наблюдений и контроля за загрязнением почв тяжелыми металлами
  17. 3 .7. Составление и оформление карт загрязненности почв
  18. 2.3 Тяжелые металлы и другие элементы
  19. 2.4 Источники поступления тяжелых металлов в окружающую среду
  20. 4.1. Трассировка тяжелых металлов в позвоночных и причины выбора большого баклана для этой цели.