<<
>>

ГАЛЛИЙ ИЗ КОЛОШНИКОВОЙ ПЫЛИ ПЕЧЕЙ ДЛЯ ПРОИЗВОДСТВА ФОСФОРА

Галлий в природе находится в виде смеси с соединениями цинка, германия, алюминия и меди, значительное его количество присутствует в углях. Хотя в природе галлий имеется в достаточном количестве, он сильно рассеян и в природных рудах он встречается в концентрации 0,001—0,02 %.

Галлий также содержится в незначительных количествах в фосфатных минералах и в значительной мере концентрируется в процессе переработки руды для получения элементарного фосфора.

В этом производстве абгазы электропечей направляются в осадители для выделения и сбора пыли, которая содержит наряду с другими элементами галлий. Из других элементов наибольший интерес представляют цинк, серебро, кадмий, алюминий, фосфор, натрий, калий, кальций, фтор, хлор, кремний и углерод.

Выделение галлия и германия из зольной пыли, образующейся при сгорании угля, и из колошниковой пыли фосфорного производства описано Р. Ф. Уотерсом и X. Кенворси в сообщении № 6940, Горное министерство США (апрель 1967).

В этом издании описаны методы лабораторного селективного выпаривания для выделения германия и галлия. В лучших экспериментах выделяется от 85 до 98 % германия в виде низших оксидов и сульфидов, и от 75 до 97 % галлия в виде низших оксидов и трехлорида галлия. Концентрация получаемых концентратов непостоянна и содержание выделяемых соединений изменяется от нескольких сотых до 8 % в зависимости от использованного метода. При первичной экстракции одного германия коэффициент экстракции превышает 100, для галлия он равен ~30. Обогащение концентрата может быть проведено путем упаривания, выщелачивания и осаждения.

Процесс, разработанный Т. Л. Чарльтоном, Р. Ф. Реддером, X. Е. Хиршем и С. С. Лиангом (патент США 4 071422, 31 января 1978 г., фирма «Коминко Лтд», Канада), предназначен для выделения галлия и других ценных компонентов из дымной пыли фосфорного производства путем обработки ее серной кислотой с образованием раствора и твердого остатка.

Цинк осаждается из раствора в виде аммонийноцинкового сульфата (гексагидрат) и щелочные добавки используются для осаждения концентрата галлия с получением свободного от галлия раствора, обработкой которого можно получать сульфаты и фосфаты других металлов.

Галлиевый концентрат можно обогатить добавлением извести, осаждающей фосфат кальция, с последующим введением гидроксида натрия для растворения соосаж- денных соединений галлия и алюминия. Твердый остаток рециркулируется, а раствор нейтрализуется для осаждения обогащенного концентрата. Алюминий может отделяться в виде алюмината кальция. Обогащенный концентрат можно растворять в щелочах и проводить электролитическое выделение галлия. Такой процесс схематически представлен на рис. 63.

Исходная пыль из электропечей производства элементарного фосфора имеет различный состав в соответствии с составом используемых природных фосфатов. Она может содержать, например, %: GaO,02—0,05, Zn 5—15, Cd 0,5, Ag 280—700 г/т, Al2O3 1—4, Na2O 1—3, K2O 5—25, CaO 7—12, P2O5 25—35, Cl 0,3—1, SiO2 13—19, F I—5, H2O 5—20. После удаления из пылеуловителя при контакте с воздухом пыль сгорает и при этом частично плавится с образованием агломератов различного размера. Агломерат может достигать величины 30—45 см. При таком комковании продукт не может направляться на переработку.

На стадии предварительной обработки I (рис. 63) размер частиц может быть уменьшен до требуемого для последующих операций значения — I см или менее. Материал подается в соответствующее устройство — молотковую мельницу и затем просеивается. Частицы с большим размером чем это необходимо возвращаются в повторное измельчение. Удовлетворяющий требованиям мелкозернистый материал подается на обработку серной кислотой.

Другой вариант заключается во влажном измельчении дымной пыли в виде водной суспензии, после чего следует стадия отделения твердых частиц от раствора. Такой метод обработки предпочтителен при наличии в пыли большого количества водорастворимых компонентов.

При мокром размоле не только достигается уменьшение размера частиц, но и происходит растворение значительного количества веществ. Полученный водный раствор содержит определенное количество соединений калия и фосфатов металлов, что делает экономически выгодным процесс переработки этого раствора в удобрения. После отделения водного раствора твердые частицы подсушиваются, если это необходимо, перед подачей на обработку серной кислотой (стадия 2).

На стадии 2 предварительно обработанная пыль обрабатывается серной кислотой для перевода металлов в соответствующие сульфаты и для удаления, по крайней мере частично, фтора. Пыль смешивается с серной кислотой, нагревается до

повышенной температуры и масса перемешивается в течение времени, достаточного для достижения необходимой степени перевода соединений в раствор.

По одному из методов сернокислотной обработки пыль смешивается с кислотой в количестве, достаточном для создания в смеси концентрации свободной кислоты

15—25 %, что обеспечивает полную экстракцию металлов.

Реакция проводится при температуре 60—IOO0C и перемешивании в течение 0,5—6 ч. Параллельно с переводом соединений металлов в сульфаты выделяющийся фтор вступает в реакцию с кислотой и кремнеземом с образованием четырехфтористого кремния, который выделяется из реакционной смеси. Для полного удаления летучих фтористых соединений из раствора над ним может быть создано разрежение. Раствор отделяется от выщелоченного остатка в сепараторе 4.

Высокая концентрация свободной кислоты в растворе приводит к коррозии аппаратуры на стадии 2 и последующих этапах. Использование специальных кислотостойких сталей устраняет эту проблему, однако существенно удорожает процесс.

Высокий коэффициент экстракции и эффективное удаление фтористых соединений могут быть получены при поддержании уменьшенной концентрации кислоты в растворе для уменьшения коррозии. При этом пыль подвергается двустадийной обработке, сначала минимальным количеством концентрированной серной кислоты, а далее проводится выщелачивание сульфатов водой.

Используется такое количество 94 %-ной серной кислоты, которое достаточно для перевода соединений металлов в сульфаты и создания концентрации свободной кислоты в получающемся растворе около I—4%. При этом полностью устраняется необходимость использовать специальную коррозионноустойчивую аппаратуру.

Температура и время смешения регулируются таким образом, чтобы обеспечить эффективность обоих процессов — получения сульфатов и удаления фтористых соединений. Кроме того, эти факторы определяют текучесть получаемой кислой массы. Для поддержания хорошей текучести температура должна поддерживаться ^:100 0C,

Рис. 63. Процесс концентрирования и выделения галлия из колошниковой пыли фосфорного производства:

1 — 17 (в тексте); 18 — остаток выщелачивания, промывной раствор; 19 — остаток (серебро, цинк, гипс, оксид кремния); 20 цинк, аммоний, суль- фатгексагидрат; 21 — раствор № I без соединен имя галлия; 22 — галлиевый концентрат JSs I; 23 — известь NaOH; 24 — выделившийся осадок; — известь; 26 — алюминат кальция; 27 — раствор Na 2 бев соединений галлия; 28 — концек* трат, обогащенный галлием; 29 — отработанный электролит

Предпочтительно в интервале 100—250 0C. По крайней мере 15 мин требуемся для проведения полного смешения и перевода соединений в сульфаты. Предпочтительно проводить процесс в течение I—2 ч.

Обработка серной кислотой по указанному выше способу проводится в специальных устройствах, например, в глиномялке. Для поддержания необходимой температуры используется наружный обогрев. Отходящие газы промывают в скруббере; после окончания реакции масса выгружается и направляется в стадию выщелачивания 3, где она смешивается с подкисленными промывными водами со стадии промывки твердых остатков выщелачивания. При этом происходит растворение сульфатов металлов и образование кристаллов гипса, легко отделяемых от раствора. Выщелачивание проводится или в одном реакторе или в двух соединенных последовательно. Смесь сульфатов и промывных вод подается в первый реактор, а полученный раствор и остаток отбираются из второго.

Выщелачивание проводится при температуре 60—100 0C. Обогрев проводится, например с помощью пара. Для сохранения продуктов выщелачивания в растворенном состоянии и для предотвращения коррозии аппаратуры концентрация свободной серной кислоты поддерживается постоянной в интервале I—4 %. Концентрация кислоты определяется ее количеством, добавленным на стадии кислотной обработки 2, и далее зависит от содержания кислоты в промывных водах. Изменение концентрации кислоты может проводиться упариванием раствора или его разбавлением водой.

Твердый остаток после выщелачивания отделяется в сепараторе 4. Разделение и промывка осадка производятся с помощью стандартных методов и аппаратуры. Тщательная промывка обеспечивает более полное отделение ценных компонентов.

Для уменьшения потерь галлия, цинка и фосфатов вместе с твердым остатком он промывается водой в противоточных (как минимум в две стадии) устройствах. После сепарации и промывки подкисленный промывочный раствор подается в выщелачиватель 3. Перед подачей в 3 промывные воды в случае необходимости упариваются или разбавляются для изменения удельного веса раствора.

Твердый остаток, содержащий серебро, цинк, гипс и диоксид кремния, может подвергаться дальнейшей переработке для выделения соединений металлов. На стадии осаждения 5 проводится удаление из полученного в 3 раствора главным образом соединений цинка. Цинк с высокой эффективностью осаждается в виде гексагидрата цинк—аммоний сульфата (ЦАС), (NH4)2Zn(SO4)2-BH2O. Это соединение незначительно растворимо в растворах, содержащих gt;100 г/л сульфата аммония; для проведения процесса предпочтительна концентрация сульфата аммония в интервале 100—200 г/л.

Необходимая концентрация сульфата аммония может создаваться на стадии 5 добавлением его в необходимом количестве, или добавлением определенных количеств аммиака и серной кислоты. Значения pH как правило должны составлять I—2, предпочтительно значение pH = 1,5; величина pH регулируется добавлением аммиака или кислоты.

Добавление аммиака и кислоты ведется до достижения концентрации сульфата аммония 100—200 г/л. />Для обеспечения более полного осаждения ЦАС температура должна поддерживаться максимально низкой, например 250C или ниже. В случае добавления сульфата аммония и понижения растворимости ЦАС раствор может нагреваться до 60 0C и затем охлаждаться для обеспечения наиболее благоприятных условий дл'я роста кристаллов. В зависимости от состава исходной колошниковой пыли удельный вес раствора регулируется таким образом, чтобы наиболее легко осуществлялось отделение оставшегося раствора от выпавших кристаллов ЦАС. Плотность раствора, получаемого при выщелачивании, должна составлять 1,2—1,5.

Кристаллы ЦАС, не содержащие соединений галлия, отделяются от раствора в сепараторе 6, промываются раствором с содержанием сульфата аммония gt;100 г/л, выделяются и могут в дальнейшем использоваться для приготовления цинксодержащих удобрений.

При наличии кадмия в исходной пыли он соосаждается вместе с ЦАС. Отделение кадмия производится путем растворения кристаллов ЦАС и высаживания его цинковой пылью. После этого из отделенного раствора проводится повторная кристаллизация ЦАС, не содержащего кадмия.

При таком методе осаждения цинка его концентрация в растворе становится равной около I г/л. Полученный раствор обрабатывается в первом осадителе 7 щелочью для осаждения первого галлийсодержащего концентрата. Концентрат является сложным продуктом переменного состава и Содержит практичесхй весь галлий, алюминий и фтор, присутствовавшие в исходном растворе, значительное количество фосфатов, а также суЛ1фаты калия, натрия и аммония.

Перед добавлением щелочи плотность раствора регулируется в зависимости от состава исходной пыли таким образом, чтобы предотвратить осаждение фосфатов. Плотность должна быть в интервале значений 1,1—1,3. Затем раствор нагревается до температуры 60—IOO0C при увеличении pH до 3,5-=-5,0, за счет добавления аммиака или гидроксида аммония. Осаждение происходит полностью после перемешивания получившейся суспензии в течение I ч.

Так как для данного количества алюминия масса фосфатов, содержащихся в первом концентрате, прямо пропорциональна массе фтора в растворе, важно удалить как можно больше фтора из перерабатываемого сырья до осаждения первого концентрата. Удаление фтора проходит достаточно эффективно на стадии сернокислотной обработки 2, описанной выше, при проведении операции при максимально допустимых температуре и времени реакции.

Первый галлиевый концентрат отделяется от первого, не содержащего галлия, раствора в сепараторе 8 и далее концентрат промывает водой для удаления растворимых соединений. Раствор после отделения в 8 и промывные воды содержат главным образом сульфаты натрия, калия и аммония, которые могут перерабатываться в удобрения. Раствор практически не содержит соединений галлия (^:1— г/л). После первой промывки галлиевый концентрат содержит около I % галлия, то есть в 20—50 раз больше, чем его содержалось в исходной пыли. Содержание галлия может быть повышено, используя методы, описываемые во второй части процесса.

Концентрат подается на стадию щелочного осаждения и выщелачивания 9, где его суспендируют с водой и известью, добавляемой для осаждения и удаления фосфатов в виде фосфата кальция. Все ионы SO^- осаждаются в виде гипса. Известь предварительно смешивается с водой и затем добавляется к концентрату.

Количество добавляемой извести определяется содержанием фосфатов в концентрате, которое может достигать 50 % P2O5; известь добавляется по крайней мере в стехиометрическом количестве. Фосфаты осаждаются, при этом возможно соосаждение галлия и алюминия. Суспензия перемешивается в течение I ч или более и выдерживается при температуре 60—IOO0C.

После промежутка времени достаточного для получения фосфата кальция добавляют требуемое количество щелочного материала, например гидроксида натрия или калия, для растворения присутствующих в осадке соединений галлия и алюминия. Гидроксид добавляется в количестве, достаточном для создания постоянного значения pH = 11.

На стадии 9 обе операции — осаждение и выщелачивание — могут проводиться в одном и том же реакторе, но для получения хорошего разделения галлия и фосфатов необходимо операции проводить строго последовательно: сначала осаждать фосфаты известью, а затем добавлять щелочь для растворения галлия. Перемешивание массы в течение I часа или более приводит к полному растворению галлия и алюминия, фосфат кальция остается в виде осадка.

После выхода со стадии 9 смесь подвергается разделению в сепараторе 10. Твердая фракция, т. е. осадок, промывается и используется для выделения ценных компонентов. Как правило, она направляется в начало процесса, на стадию кислотной обработки 2. Если необходимо, часть остатка может направляться в выщелачиватель 3.

Жидкая фракция из сепаратора 10, представляет собой смесь галлатов и алюминатов и может сразу подвергаться обработке на стадии 13 для получения обогащенного галлиевого концентрата. Раствор нейтрализуется кислотой. Обычно используется 93 %-ная серная кислота для понижения pH до значения 6, при котором осадок галлия наименее растворим.

Осаждение проводится при температуре 60—IOO0C в течение времени достаточного для получения осадка, легко отделяемого от раствора. Полученный обогащенный галлиевый концентрат отделяется от жидкости в 14 с получением второго раствора, не содержащего галлия. Твердый остаток промывают и высушивают.

Если необходимо, алюминий отделяется от обогащенного концентрата путем его растворения, добавления подходящего соединения кальция для осаждения алюмината кальция, удаления остатка (на схеме не показано) и образовавшийся рас

твор используется для повторного получения обогащенного концентрата, как это описано выше.

В предпочтительном варианте процесса жидкая фракция после стадии разделения 10 первоначально подвергается обработке для осаждения алюминия (стадия 11), после чего проводится разделение жидкости и твердого остатка 12. На стадии 11 алюминий осаждается в виде алюмината кальция. Кальциевое соединение добавляется к жидкости после операции 10 в виде известкового молока или гидроксида кальция, обычно в количестве, в I—2 раза превышающем стехиометрическое. Значение pH должно поддерживаться ~11 для предотвращения осаждения галлия. Температура должна составлять 60—100°С. Смесь перемешивается в течение 2 ч или более для полного завершения реакции и затем подвергается разделению на стадии 12. Твердый остаток отделяется и промывается, затем выводится из процесса; раствор галлата обрабатывается в осадителе 13 для получения обогащенного гал- лиевого концентрата, после чего проводится разделение на стадии 14 так же как описано выше.

Обогащенный концентрат, содержащий например 20 % галлия, аккумулирует 70—90 % галлия, присутствовавшего в исходной пыли. Обогащенный концентрат далее используется для получения металлического галлия.

В третьем варианте процесса исходная пыль обрабатывается как описано выше для получения обогащенного галлиевого концентрата, после чего он растворяется на стадии 15 в щелочном растворе. Можно также разбавить концентрат водой и добавить твердую щелочь. Растворенный концентрат подвергается электролизу 16, который проводится в соответствии с известной технологией.

После выделения металлического галлия электролитический раствор может возвращаться на стадию 9. В случае необходимости часть электролита может подаваться на стадию 15, как показано прерывистой линией иа^рис. 63.

Выделенный описанным способом металлический галлий имеет чистоту около 99 %, основной примесью является цинк. В случае необходимости галлий подвергается дальнейшей очистке для получения особо чистого металла, используемого в электронике.

<< | >>
Источник: М. Ситтиг. Извлечение металлов и неорганических соединений из отходов. 1985

Еще по теме ГАЛЛИЙ ИЗ КОЛОШНИКОВОЙ ПЫЛИ ПЕЧЕЙ ДЛЯ ПРОИЗВОДСТВА ФОСФОРА:

  1. ГАЛЛИЙ ИЗ КОЛОШНИКОВОЙ ПЫЛИ ПЕЧЕЙ ДЛЯ ПРОИЗВОДСТВА ФОСФОРА
  2. ЦИНКА ХЛОРИД ИЗ ОТРАБОТАННЫХ КАТАЛИЗАТОРОВ