<<
>>

От крицы к крице

Каждый знает, что без генератора двигатель автомобиля работать не может. Ни один генератор не будет работать без медно-графитовых щеток, которые забирают электрический ток с коллектора электромашины.

Сегодня изготовление медно-графитовой щетки не является проблемой, однако в процессе создания этого материала ученые столкнулись с немалыми трудностями. Дело в том, что графит не растворяется в меди, и поэтому получить этот материал традиционным методом сплавления невозможно. Можно, правда, расплавить медь и путем интенсивного перемешивания в ней порошка графита создать медно-графитную эмульсию.

Если такая эмульсия будет кристаллизоваться (затвердевать) в условиях невесомости (например, на космическом корабле), то ее состав после затвердевания получится однородным. Изготовленный таким образом материал мог бы применяться для медно-графитовых щеток. Ho сегодня такая «космическая» технология является, конечно, неприемлемой для промышленности. В условиях земного тяготения легкие частицы графита не распределяются равномерно в меди, обладающей значительным удельным весом. Поэтому сплавлением получать однородный медно-графитовый материал практически невозможно.

Как же ученые решили эту достаточно сложную задачу? Они нашли способ производства медно-графитных щеток, как две капли воды похожий на старинный способ получения... сварочных булатов.

Есть сведения, что в X веке арабы применяли такую технологию для изготовления клинков из сварочного булата: из прокованных железных криц получали опилки, которые слегка окисляли, сваривали горячей ковкой и выжимали заготовку для клинка. Аналогичный способ производства мечей применялся и древними германцами. Стальной порошок перед сваркой подмешивался в корм птицам и пропускался через их пищеварительный тракт. Процесс пищеварения способствовал равномерному окислению порошка, а взаимодействие с птичьим пометом, содержащим углеродно-азотистые органические соединения, приводило к его цементации и азотированию. Полученный ковкой и сваркой такого порошка сварочный булат обладал высокими свойствами, поскольку частицы железного порошка, из которых он был «спечен», имели твердые, изностойкие карбидные или нитридные оболочки и пластичные, вязкие сердцевины.

Так вот, медно-графитные щетки приготовляются подобным образом. Сначала тщательно смешивают порошки меди и графита, затем путем прессования в специальных пресс-формах готовят прессовки из полученной смеси и спекают их при высокой температуре в печах с нейтральной или восстановительной атмосферой. В наше время подобные методы получения металлических спла

вов и других материалов относят к порошковой металлургии .

Порошковая металлургия как искусство получения губчатого металла, металлических порошков и изделий из них появилась в глубокой древности. Порошки золота, меди и бронзы применяли как краски и использовали для декоративных целей в керамике и живописи. Ювелирные изделия, полученные спеканием засыпанных в соответствующие формы порошков золота и серебра, встречаются среди сокровищ египетских фараонов, вавилонских царей и древних инков. В дальнейшем этот способ получения металлических изделий был практически забыт.

Заслуга возрождения порошковой металлургии и превращения ее в технологический процесс производства металлических изделий принадлежит русскому металлургу П. Г. Соболевскому [79], который в первой половине XIX века совместно с В.

В. Любарским разработал технологию прессования и спекания платинового порошка.

А случилось это так. В 1819 году на Урале в Верх-Исетском округе были открыты значительные залежи платины. Платина на Урале была известна давно — ее зерна часто находили при добыче золота. Вплоть до XVIII века никакого применения они не находили, и поэтому зерна платины либо сбрасывали в отвалы, либо местные охотники использовали их как дробь при стрельбе. Открытые большие залежи чистой платины долгое время оставались неиспользованными, и никто не знал, как и на что их употребить.

В 20-х годах XIX века русские финансы находились в весьма плачевном состоянии, и золота для чеканки монет не хватало. Министр финансов Е. Ф. Канкрин решил заменить золото платиной. Он поручил известному металлургу П. Г Соболевскому организовать чеканку платиновых монет. Ho как это осуществить, если температура плавления платины очень высокая (1773 °С) и расплавить ее в то время было невозможно, а под молотом она не ковалась и даже не раскалывалась при ударах на наковальне?

И все-таки П.Г. Соболевский и его коллега В. В. Любарский нашли способ производства изделий из платины. Они растворили ее в царской водке, добавили хлористый аммоний и выделили платину из раствора в виде комплексной соли. Прокаливая эту соль на воздухе, можно было получать платиновую губку, которая легко размалывалась в порошок Порошок прессовали в холодном состоянии в специальных формах. Прессовку нагревали и в одних случаях спекали, а в других проковывали в различные изделия. В 1826 году были получены проволока, чаши, тигли, медали и даже слиток.

С 1828 года Монетный двор начал серийный выпуск платиновых монет. На эти цели было употреблено 900 пудов соли (около 15 тонн) платины. Россия стала первой в мире страной, которая реализовала промышленную технологию порошковой металлургии платины. Англичанин Волластон только в 1829 году предложил аналогичный способ получения компактной платины. Знаменательно, что платиновые монеты, выпущенные к Московской 0лимпиаде-80, были изготовлены также методом порошковой металлургии.

В XX веке порошковая металлургия становится наукой и отраслью промышленности. В настоящее время порошковой металлургией называют область техники, охватывающую совокупность методов изготовления порошков металлов и неметаллических материалов, а также полуфабрикатов и изделий из них. Методами порошковой металлургии получают ряд материалов, которые подобно платине и медно-графитовым щет

кам трудно или невозможно получить традиционными методами. Вольфрамомедные, железокерамические, металлостекольные, алюмографитовые, боропластмассовые и ряд других подобных материалов с равномерно распределенными частицами нерастворяю- щихся друг в друге фаз получают только путем спекания или горячего прессования заготовок из хорошо перемешанных порошков этих компонентов. В некоторых из перечисленных материалов достигнуто увеличение прочности примерно в 10 раз при сохранении низкого удельного веса.

Спрессованные и спеченные из металлических порошков изделия получаются пористыми. Эти свойства используются для изготовления фильтров. В настоящее время изготавливают фильтры из порошков меди, бронзы, латуни, никеля и нержавеющих сталей. Фильтры используют в автомобильных и авиационных двигателях для фильтрации масла, в дизелях для фильтрации горючего, в газопроводах для очистки газов от пыли, в пищевой и химической промышленности для фильтрации щелочей и кислот.

На основе железного порошка созданы различные антифрикционные изделия.

Из металлических порошков получают также большое количество фрикционных изделий, работающих в узлах высокого трения. Износостойкие фрикционные изделия из порошковых сплавов широко используют в тормозных устройствах различных машин и механизмах.

Особое значение приобрели порошки быстрорежущих сталей, легированных вольфрамом, молибденом, ванадием. Карбиды этих элементов, придающие стали износостойкость при высоких температурах, распределяются в ней неравномерно. Это явление, называемое ликвацией, значительно снижает стойкость режущего инструмента.

Ликвация связана со сравнительно медленной кристаллизацией стали в изложницах (формах). Если обеспечить очень быстрый переход стали из жидкого в твердое состояние, то ликвацию можно практически полностью устранить. Ho можно ли это сделать? Да, можно — путем распыления жидкой стали специальными форсунками в защитной атмосфере и получением из нее порошка. Осуществляется это следующим образом: расплавленная сталь протекает через небольшое отверстие и разбивается струями азота или аргона на мельчайшие брызги. Остывая, они стальным порошком падают в металлосбор- ник. Скорость охлаждения частиц расплавленного металла в сотни раз выше той, которая характерна для монолитного металла в ходе его кристаллизации в слитке. Благодаря этому почти полностью устраняется ликвация, стойкость инструмента из порошковой стали увеличивается в несколько раз.

Чтобы получить из порошка заготовку для инструмента, надо миллионы порошинок превратить в компактный металл. Порошок насыпают в металлические капсулы, герметически закрывают их и прессуют. Полученные заготовки «перековываются» в любой нужный профиль. Правда, процесс этот идет не под молотом, а под скоростным гидравлическим прессом Как тут не вспомнить

о              японских кузнецах, которые с древних времен аналогичным способом получали высокоуглеродистые стали для инструмента. Они дробили крицу в мелкий порошок, науглероживали его в горне и сваривали под молотом в специальную заготовку. Такие заготовки в Японии были ли известны под названием «уваган». Уваган в твердом состоянии приваривался к куску мягкого железа, после чего изделие подвергалось термической обработке. Готовый инструмент имел очень твердый, износостойкий наконечник и мяг

кую упругую сердцевину. Вот уж поистине новое — это забытое старое. Ho старое, повторенное, конечно, на более высоком уровне на современной технической основе.

Значительную роль приобретают в технике и другие изделия из металлических порошков. Подобно булату, многие из них обладают неравновесной структурой, представляющей собой относительно пластичную основу с равномерно распределенными в ней твердыми и прочными включениями.

Давно известно, что дисперсная (очень мелкая) фаза упрочняет сплав. Так, например, твердые дисперсные частицы цементита (карбида железа) упрочняют обычную углеродистую сталь. Высокая прочность никелевых жаропрочных сплавов в большинстве случаев обеспечивается наличием упрочняющей фазы — мелких частиц интерметаллического соединения «никель-алюминий» или «никель-титан». Поэтому с увеличением в этом сплаве содержания алюминия и титана повышаются его механические свойства. К сожалению, при высоких температурах легированные никелевые сплавы разупрочня- ются вследствие растворения в них упрочняющей фазы. Старания металлургов повысить жаропрочность никелевых и алюминиевых сплавов к положительным результатам не приводили до тех пор, пока на помощь не пришла порошковая металлургия.

В 1947 году было сделано сенсационное открытие: алюминиевые сплавы, полученные из чешуйчатого тонко дисперсного алюминиевого порошка путем брикетирования и горячего прессования, обладают очень высокими жаропрочными свойствами. Оказалось, что в таких сплавах упрочнение алюминиевой матрицы обеспечивается прочными и твердыми мелкодисперсными оксидами алюминия, которые отличаются высокой тугоплавкостью и стабильностью. А главное — они практически не растворяются в алюминии даже при температуре его плавления.

Алюминий, упрочненный частицами оксид алюминия, называют САП — спеченная алюминиевая пудра. В настоящее время промышленность производит несколько марок САП, которые применяются для самых разнообразных конструкций. САП сохраняет удельный вес алюминия и его высокую коррозионную стойкость. Его применяют вместо нержавеющих сталей и титановых сплавов.

Порошковые покрытия являются эффективным способом борьбы с коррозией металлов. Коррозионная стойкость стали с такими покрытиями возрастает в 3 — 5 раз по сравнению с лакокрасочной защитой! Например, т порошкового покрытия может защитить от коррозии в течение 25 — 30 лет 40 тыс. т металлических конструкций мостов, опор линий электропередач, железнодорожных вагонов и других строительных сооружений. Что же касается узлов трения машин и механизмов, то здесь I т покрытий экономит до 100 тыс. рублей, повышая стойкость деталей в 5 —10 раз.

Каждый, кто был в механическом цехе, видел огромное количество стружки. Она струится из-под резцов токарных станков, заполняя цехи, а потом и заводской двор. 45 — 50% стали при изготовлении из нее изделий традиционными способами уходит в стружку. При изготовлении деталей из порошковых сталей стружке браться неоткуда. Поэтому коэффициент использования металла составляет здесь 90 — 95%! He удивительно, что каждая тысяча тонн деталей из железного порошка в среднем дает в год около I миллиона рублей экономии, сберегает тысячи тонн металла, освобождает 190 квалифицированных рабочих и 80 металлорежущих станков.

Получение конструкционных деталей из порошковых сталей включает следующие операции: получение железных порошков и порошков легирующих металлов, приготовление из них порошковой шихты заданного химического и гранулометрического состава, прессование (формирование) порошковой шихты для получения заготовок (прессовок) заданной формы и размеров и их спекание. После холодного формования механические свойства заготовок очень низкие. Для повышения механической прочности и придания изделиям необходимых физико-химических свойств сформованные заготовки спекают при температуре ниже температуры плавления железа. Спекание производят в среде восстановительного газа (водорода), инертного газа (аргона) или в вакууме.

В начальной стадии спекания между частицами сформованной заготовки существует неметаллический контакт. По мере удаления влаги и восстановления окислов на поверхности частичек порошка контакт из неметаллического превращается в металлический. Последнее приводит к уменьшению размеров заготовок, уменьшению ее пористости и, следовательно, изменению свойств. Особенно резко после спекания повышается прочность изделия.

Ho все-таки после спекания из-за остаточной пористости механические характеристики изделий из порошковой стали получаются недостаточно высокими. Поэтому они могут применяться, как правило, только для слабо- и средненагруженных деталей, не претерпевающих во время работы значительных динамических нагрузок.

Для обеспечения необходимой плотности порошковой стали применяется горячая штамповка пористых заготовок. Этот процесс в значительной мере повторяет древний способ получения железных изделий горячей ковкой пористых криц (губчатого железа). Более того, одновременно с горячей деформацией пористых заготовок, так же как и при ковке булатных клинков, часто удается использовать эффекты термомеханической обработки, которые формируют специфичную мелкозернистую структуру стали, обеспечивающую ей высокий комплекс механических свойств. Таким образом, методом горячей штамповки или допрессовки пористых заготовок можно получать конструкционные детали из порошковой стали, не уступающие по своим свойствам выплавленным.

В настоящее время основная масса изделий из порошковой стали приготовляется на основе железных порошков и сажистого углерода Так же как и булаты, они являются, как заметил П. П. Аносов, сплавом «железа и углерода и ничего более». Применение легированных стальных порошков обеспечивает более высокое качество как спеченных, так и горячештамнованных изделий.

Так, например, недавно была разработана технология получения изделий из высокохромистой порошковой стали, которая очень напоминает один из способов получения булата. Смеси порошков железа, белого чугуна и хромистой стали, содержащей 30% хрома, формуются двукратным прессованием и спекаются в печи с защитной атмосферой. Сравнительно невысокая температура и кратковременность спекания исключает выравнивание концентрации углеродов и хрома по всему объем}' металла, формируя этим самым неравновесную структуру типа булата. Эксплуатационные испытания в течение 9000 часов показали, что детали масляного насоса из порошковой хромистой стали с неравновесной структурой (микробулат) при работе в паре с закаленной быстрорежущей сталью обладают в 2 — 3 раза более высокой износоустойчивостью, чем эти же детали из

обычной «равновесной» шарикоподшипниковой стали.

Так мудрость древних, дошедшая до нас с редкими образцами булата, сегодня воплощена в порошковых сталях, в слоистых и композиционных материалах. Материалы эти не только повторяют, но и развивают дальше идеи булата. Так же, как когда-то булат, они обладают необыкновенными свойствами, по сравнению с обычными сталями и сплавами, сочетая такие качества, как пластичность и прочность, твердость и вязкость, долговечность и огнеупорность, износостойкость и жаропрочность. Поэтому наши старые знакомые — композиционные материалы и порошковые стали по праву являются прямыми наследниками булата. Кислотоупорные и жаропрочные булаты, огнеупорные булаты, твердосплавные булаты — самые лучшие современные материалы.

<< | >>
Источник: Гуревич Ю.Г. . Булат. Структура, свойства и секреты изготовления: Монография. 2006

Еще по теме От крицы к крице:

  1. От крицы к слитку
  2. СЛОВАРЬ МЕТАЛЛУРГИЧЕСКИХ ТЕРМИНОВ
  3. ВВЕДЕНИЕ
  4. Суотниеми (Яркое)
  5. РАБОВЛАДЕЛЬЧЕСКИЕ И ФЕОДАЛЬНЫЕ ГОСУДАРСТВА СРЕДНЕЙ АЗИИ И СИБИРИ
  6. Общая характеристика га ль штат с кой культуры
  7. Секреты булата
  8. 10 Западноевропейские культуры в галыитатское время
  9. ГЛАВА 18 ДРЕВНЕРУССКИЕ ГОРОДА IX—XIII ВВ.
  10. Н. И. Николаева НЕКОТОРЫЕ ИТОГИ АНТИАМЕРИКАНСКОЙ КАМПАНИИ В СССР В КОНЦЕ 40 - НАЧАЛЕ 50-Х ГОДОВ
  11. М.В. Лапенко РОЛЬ ДЖЕЙМСА ФОРРЕСТОЛА В ФОРМИРОВАНИИ АНТИКОММУНИЗМА В США
  12. Сборник статей. НОВЕЙШАЯ ИСТОРИЯ 2001, 2001
  13. В.Г. Сироткин, Д.С. Алексеев СССР И СОЗДАНИЕ БРЕТТОН-ВУДСКОЙ СИСТЕМЫ 1941-1945 ГГ.: ПОЛИТИКА И ДИПЛОМАТИЯ
  14. Гладкий А. В.. Введение в современную логику. — М.: МЦНМО,2001. — 200 с., 2001
  15. Предисловие
  16. Введение
  17. Часть I. Простейшие законы и понятия логики
  18. Глава 1. Основные логические законы
  19. Глава 2. Понятие