<<
>>

СУЛЬФАТНЫЙ ВАРОЧНЫЙ РАСТВОР ИЗ ОТРАБОТАННОГО ВАРОЧНОГО РАСТВОРА

В современных целлюлозных заводах бойлер для регенерации химических растворов является наиболее дорогостоящим аппаратом.Черный отработанный варочный раствор и коричневый раствор, получаемый при промывке бумажной массы, в бойлере подвергают упариванию до получения содержания твердых веществ 55— 65 %, а затем распыляют и сжигают.

В результате выделяется тепло и получаются химические соединения, входившие в состав растворов.

Процесс, разработанный К. О. Хенриксоном (патент США 4 093508, 6 июня г.; фирма «Л. Альстрём Осакейхтион, Финляндия), предназначен для извлечения химических соединений из отработанных сульфатных растворов для варки целлюлозы и из сточных вод процесса отбеливания.

Расплав из печи для кальцинирования соды, состоящий в основном из сульфида и карбоната натрия и содержащий также хлорид натрия, растворяют и осветляют с получением зеленого раствора, содержащего карбонат, сульфид и хлориды. Карбонат отделяют от сульфида и хлоридов. По меньшей мере часть хлорида натрия отделяют от раствора сульфида; по меньшей мере часть карбоната действием щелочи превращают в гидроксид и растворы гидроксида и сульфида смешивают друг с другом в соотношении, необходимом для получения варочного раствора с требуемым содержанием сульфида.

Схема такого процесса в общем виде приведена на рис. 155. Отработанный раствор подают в обжиговую печь I и полученный расплав, состоящий в основном из карбоната и сульфида натрия, растворяют в аппарате 2, получая зеленый раствор. Сточные воды со стадии отбеливания по линии 20 подаются в аппарат 2. Зеленый раствор осветляют в отстойнике 3 и подают в сепаратор для карбоната натрия 4. Карбонат натрия выделяют из зеленого раствора 10 путем кристаллизации, которая проводится таким образом, что хлориды остаются в маточном растворе. Кристаллизацию лучше всего проводить путем охлаждения, поскольку в этом случае карбонат осаждается в виде декагидрата, что позволяет снизить количество выпариваемой воды.

Из содового сепаратора смесь, содержащая большое количество сульфида, по линии 11 подается в аппарат для подщелачивания 5, в котором происходит удаление остатков карбоната, хотя эта стадия и не является обязательно необходимой. Обычно в аппарате 5 сульфидный раствор обрабатывают известью; при добавлении больших количеств извести достигается полное протекание реакции.

Кристаллический карбонат натрия, полученный в сепараторе 4, растворяют в аппарате 6 и подают в аппарат для подщелачивания 9. В результате получают раствор 18, содержащий в основном гидроксид натрия; в нем могут присутствовать и некоторые количества примесей. Раствор гидроксида натрия используют для приготовления варочного раствора, однако он может найти применение в любой стадии процесса, в которой используется гидроксид натрия.

По линии 11 поступает раствор сульфида, в котором могут содержаться некоторые количества примесей, прежде всего хлорида натрия. В этом растворе нахо

дится лишь малая часть от общего количества карбоната натрия, поскольку основная часть его была отделена в сепараторе 4. При обработке раствора И щелочью большая часть карбоната натрия превращается в гидроксид натрия и в растворе, выходящем из аппарата для подщелачивания по линии 12, содержатся очень малые количества карбоната.

Сульфидный раствор, выходящий по линии 12, подают для выпаривания в кристаллизационный аппарат 7, в котором происходит осаждение кристаллического хлорида натрия. В сульфидном растворе 14, выходящем из кристаллизационного аппарата, концентрация хлорида натрия может быть снижена до %; при этом концентрация сульфида натрия возрастает до gt;25 % и осаждения кристаллов сульфида натрия не происходит. Кристаллический материал 13 содержит ряд примесей, прежде всего карбонат и сульфат натрия. Однако их количества настолько

alt="" />

Рис.

155. Схема процесса выделения химических соединений из отработанного сульфатного раствора для варкн целлюлозы и из сточных вод процесса отбеливания

малы, что обычно они могут быть выведены из процесса вместе с хлоридом натрия. Если в ходе процесса возникают большие потери вещества, то может быть проведено извлечение карбоната и сульфата натрия путем выщелачивания кристаллического материала в аппарате 8. Извлеченные вещества 15 могут быть возвращены на одиу из стадий процесса до содового сепаратора 4.

Варочный раствор приготовляют смешиванием растворов 14 и 18 в необходимых соотношениях, позволяющих получить в растворе требуемое содержание сульфида. Избыток соединений натрия, присутствующий в системе, легко может быть удален из линии 17 в виде кристаллического карбоната натрия. Избыток соединений серы может быть удален из линии 14 в виде концентрированного раствора сульфида натрия. Избыток соединений хлора удаляют из линий 13 и 16 в виде кристаллического хлорида натрия.

Процесс, разработанный Г. К. Дехаасом (патент США 4 135968, 23 января г.; фирма «Вейерхойзер Компани»), позволяет значительно увеличить производительность существующих регенерационных бойлеров при уменьшении загрязнения окружающей среды.

Отработанный раствор концентрируют до получения содержания твердых веществ 55—65 % и разделяют на две части. Одну часть, содержащую 10—65 % твердых веществ, подвергают пиролизу в результате чего исходная калорийность этого раствора снижается на 25—70 %. Остаток, в который входят углеродсодержащая смола и неорганический материал, направляют в регенерационную печь. Другую часть раствора непосредственно подают в печь без предварительной обработки. Перед подачей в печь обе порции исходного раствора могут быть смешаны. В этом случае содержание твердых веществ в полученной смеси не должно превышать 80 % .

Схема этого процесса представлена па рис. 153. Материал I со стадии варки подается на стадию сепарации, в которой происходит отделение бумажной массы 3 от отработанного раствора 4.

Отработанный раствор подают на стадию упаривания 5, где происходит удаление воды 6 и содержание твердых веществ в растворе повышается до 40—65 %. После упаривания может быть проведено концентрирование раствора (эта стадия на схеме не показана), которое позволяет повысить содержание твердых веществ до 55—65 %.

Часть концентрированного раствора может быть подана на стадию сушки 8 для дополнительного удаления воды 9. Для этой цели могут быть использованы любые известные сушильные аппараты, в частности аппараты для быстрой сушки

или для сушки распылением. Высокой эффективностью обладает модифицированная система для сушки распылением, в которой раствор распыляется в перегретый водяной пар. Отработанный пар, выходящий из су- шителя, может быть использован на различных стадиях процесса, например на стадии упаривания. Оставшуюся часть сконцентрированного отработанного раствора 16 непосредственно направляют в регенерационный бойлер 17.

После сушки отработанный раствор с предпочтительным содержанием твердых веществ ^90—100 % подают для пиролиза в реактор 11, в котором органический материал, содержащийся в растворе, частично превращается в горючий газ 12. Этот газ может быть пропущен через аппарат для удаления серы 13\ очищенный горючий газ 14 можно использовать в качестве топлива.

Остаток 15 из реактора пиролиза, содержащий как органические, так и неорганические материалы, направляют в обычный регенерационный бойлер 17. Если его не смешивают с раствором 16 и он подается в твердом виде, то он может быть подан в бойлер в разных точках — как в окислительную, так и в промежуточную либо в восстановительную зоны. Предпочтительно подавать пиролитический остаток непосредственно на слой расплава, что позволяет вводить материал в зону относительно низких температур и скоростей газа. Таким образом уменьшается вероятность уноса твердых частиц отходящими газами 20 в зону пароперегревателя и оттуда — в атмосферу. Отходящие газы проходят через систему для удаления твердых частиц 21, после чего очищенный газ 22 выходит в атмосферу. Тепло, генерируемое в регенерационной печи, используют для испарения поступающей воды 18 с получением в зоне пароперегревания водяного пара высокого давления 19.

Неорганический материал 23 из регенерационной печи подают в резервуар 24, где при обработке водой 25 получается зеленый раствор 26. Последний в аппарате 27 обрабатывают негашеной известью 28, в результате чего карбонат натрия превращается в гидроксид натрия. Раствор 30, выводимый из аппарата 27, возвращается для использования в качестве варочного раствора. Карбонат кальция, образующийся в процессе подщелачивания, направляют в печь для обжига извести и последующего повторного использования.

Cm. «Хлорид цинка из отработанных катализаторов».

<< | >>
Источник: М. Ситтиг. Извлечение металлов и неорганических соединений из отходов. 1985

Еще по теме СУЛЬФАТНЫЙ ВАРОЧНЫЙ РАСТВОР ИЗ ОТРАБОТАННОГО ВАРОЧНОГО РАСТВОРА:

  1. СУЛЬФАТНЫЙ ВАРОЧНЫЙ РАСТВОР ИЗ ОТРАБОТАННОГО ВАРОЧНОГО РАСТВОРА
  2. ЦИНКА ХЛОРИД ИЗ ОТРАБОТАННЫХ КАТАЛИЗАТОРОВ