<<
>>

3.7. Характеристика бетонов

Кроме оксидов кремния, алюминия, кальция, магния, Железа и марганца в шлаках содержится значительное количество таких ценных компонентов, как медь, кобальт, цинк, свинец, кадмий, редкие металлы.

В связи со специфическим составом шлаков цветной металлургии общим перспективным направлением в решении проблемы их использования является принцип комплексной переработки, включающий три основные стадии: 1) предварительное извлечение цветных и редких металлов; 2) выделение железа; 3) использование силикатного остатка шлака для производства строительных материалов.

Многочисленными исследованиями установлено, что шлаки медной и никелевой плавок, как правило, по прочностным характеристикам, теплофизическим свойствам, коэффициенту износостойкости, кислотостойкости значительно превышают аналогичные показатели доменных шлаков.

С использованием вяжущего из шлаков цветной металлургии при автоклавном твердении можно получать бетоны. По физико-химическим свойствам бетоны автоклавного твердения на вяжущих из гранулированных шлаков цветной металлургии мало чем отличаются от автоклавных бетонов на клинкерных цементах и могут быть применены при изготовлении бетонных и железобетонных изделий практически всей номенклатуры. Характеристика бетонов приведена в табл. 3.7.

Переработка шлаков цветной металлургии на песок и щебень после извлечения ценных металлов представляется наиболее оптимальным путем решения проблемы их утилизации, поскольку потребность в песке и щебне (гравии) очень велика и исчисляется для нашей страны сотнями тысяч и миллионами кубических метров.

Утилизация золы и шлаков тепловых электростанций. При сжигании твердого топлива из его минеральной части образуются зола и шлак, содержание которых различно для различных видов топлива. Они составляют, %: в бурых углях -- 10-15; в каменных углях - 3-40; антраците - 2-30; горючих сланцах — 50-80; топливном торфе — 2-30; дровах — 0,5-1,5; мазуте -- 0,15-0,2 и т.д.

В настоящее время на большинстве ТЭЦ топливо сжигают в пылевидном состоянии, причем температура в топочной камере достигает 1200--1600°С. При этом конгломераты различных соединений, образующихся из его минеральной части, выделяются в виде пылевидной массы. Мелкие и легкие частицы (размеры от 5 до 100 мкм), содержащиеся в золе в количестве до 80—85 %, уносятся из топок конгломератов дымовыми газами, образуя так называемую золу-унос. Более крупные частицы оседают на под топки, оплавляются в кусковые шлаки или стекловидную массу, которую затем подвергают грануляции. Количественное соотношение между образующимися шлаками и золой-уносом различно, оно зависит от конструкции топки на ТЭЦ и ГРЭС. Так, в топках с твердым шлакоудалением в шлак обычно переходит 10—20 % всей золы топлива. В топках с жидким шлакоудалением в шлак переходит 20—40 %, а в циклонных топках — до 85— 90 % всей золы топлива. Топливные шлаки и зола-унос различаются по составу и свойствам в зависимости от вида топлива и способа его сжигания.

Зола-унос представляет собой тонкодисперсный материал с малым размером частиц, что позволяет использовать ее для ряда производств без дополнительного помола. Характерной особенностью золы является присутствие в ней около 5—6 % несгоревшего топлива, а также железа, в основном в закисной форме. Частицы шлака имеют размеры от 0,2 до 20—30 Мм. В топках с жидким шлакоудалением шлак получается в гранулированном виде. Для него характерна стекловидная структура.

По аналогии с металлургическими топливные шлаки можно классифицировать на кислые, нейтральные и основные. Большинство топливных шлаков относится к классу кислых или нейтральных. Шлаки каменных углей отечественных месторождений большей частью являются кислыми. К основным шлакам, содержащим повышенное количество закиси железа и до 40 % СаО, относятся шлаки некоторых бурых углей и сланцев. Решение проблемы утилизации золы и шлаков тепловых электростанций в связи с развитием энергетики приобретает все большую актуальность.

Под золо- и шлакоотвалами крупнейших ТЭЦ находятся тысячи гектаров земли, пригодной к использованию в сельском хозяйстве. Использование отходов ТЭЦ имеет и большое экологическое значение, поскольку они загрязняют водный и особенно воздушный бассейны, часто в количествах, превышающих ПДК. Самоудаление золы и шлаков в отвалы и содержание последних требуют затраты колоссальных средств. Достаточно сказать, что только за одни сутки работы ТЭЦ мощностью 1 млн. кВт сжигается около 10000 т угля и образуется 1000 т шлака и золы, под складирование которых (высотой 8 м) требуется более 1 га в год.

Существует опасность необратимого загрязнения биосферы вследствие распыления золы ТЭЦ при хранении в отвалах, поскольку при сгорании угля в золе остаются радиоизотопы уран-радиевого и ториевого рядов, содержащиеся в исходном угле. Они не разбавлены массой углерода, т.е. находятся в концентрированном, а следовательно, более опасном виде.

Между тем золы и шлаки ТЭЦ при правильном и эффективном их использовании представляют собой богатый источник расширения сырьевых ресурсов различных отраслей народного хозяйства, в первую очередь, промышленности строительных материалов. По расчетам ПИИ экономики строительства Госстроя СССР, использование 25—30 млн. т золы и шлаков ТЭЦ в качестве строительного сырья взамен традиционно применяющихся материалов обеспечивает экономию капитальных вложений на развитие материально-технической базы строительства в размере не менее 400 млн. руб.

Области применения золы и шлаков многочисленны. Кусковой шлак используют как заполнитель для бетона в дорожном строительстве, для теплоизоляционных засыпок; золу-унос — в качестве гидравлической добавки к цементу (10— 15 %), как компонент цементной сырьевой смеси (основные золы); в качестве кремнеземистого компонента — при производстве автоклавного и безавтоклавного газобетона, легких плотных и поризированных керамзитобетонов; для производства искусственных заполнителей (аглопоритного и зольного гравия, золокерамзита); как отощающую и выгорающую добавку в производстве глиняного кирпича; в качестве кремнеземного компонента при производстве силикатного кирпича.

Золошлаковые смеси находят применение в производстве местных вяжущих компонентов типа известково-зольных, цементно-зольных.

В последние годы все большее значение приобретает изготовление на основе топливных зол и шлаков, описанных выше, таких материалов, как золоситаллы и шлакоситаллы.

Однако, несмотря на очевидные выгоды и перспективы широкого применения золы и шлака ТЭЦ, в отечественной практике их используют явно недостаточно: в США, например, утилизируют 20 % золы ТЭЦ, во Франции — 62 %, в ФРГ — до 76 %, в СССР же пока годовое потребление золы не превышает 5 %. Причина заключается в том, что ликвидация золоотвалов ТЭЦ и переработка зол и шлаков в строительные материалы связана с необходимостью решения целого комплекса вопросов: транспортирования, строительства золопогрузочных устройств и установок по раздельному отбору золы и шлаков на ТЭЦ, разработка ТУ на их применение и т.д.

Регенерация горелой земли. Горелую землю (по причине происхождения) также можно отнести к рассматриваемой здесь категории ПО. Она является отработанным продуктом формовочных и стержневых смесей в литейном производстве. Формовочные и стержневые смеси служат для изготовления песчаных литейных форм для изделий. В зависимости от сплава (металла), толщины и массы стенок отливок в состав формовочных смесей входят в определенной пропорции неорганические материалы (кварцевый песок, огнеупорная глина и др.) и органические материалы (опилки, каменноугольная пыль и пр.).

Регенерация горелой земли, образовавшейся после отливки изделий, состоит в удалении пыли, мелких фракций и глины, потерявшей связующие свойства под влиянием высокой температуры при заполнении формы металлом. Существуют два основных способа регенерации горелой земли: мокрый и сухой.

При регенерации земли мокрым способом формовочная и стержневая смеси поступают в систему последовательных отстойников с проточной водой. Песок на дне бассейна оседает, а мелкие фракции уносятся проточной водой. Затем песок просушивают и вновь пускают в производство.

Мокрая регенерация применяется, как правило, в сочетании с гидравлической очисткой литья.

Сухой способ регенерации состоит из двух операций: обдирания от зерен песка связующих веществ и удаления пыли и мелких частиц, что достигается продуванием воздуха в закрытом барабане с последующим отсосом воздуха с пылью.

В СССР разработан и получил применение электрокоронный метод регенерации горелой земли, основанный на пропу-

Значительный рост капиталоемкости, а также увеличение цен на топливо и энергию в 70-х годах, стимулирует фирмы промышленно развитых стран к использованию вторичного сырья. Следует также учесть, что капиталоемкость производства металлов из вторичного сырья в 10 раз ниже капиталоемкости производства металлов из руды.

Цены на энергию и топливо в мире быстро растут, и производство металла из первичного сырья стало дороже, что сильно повлияло на рост использования вторичного сырья, поскольку оно менее энергоемко.

В США промышленные отрасли в 70-х годах стали открывать собственные цехи и предприятия по переработке вторичного сырья, а также скупать цветные металлы на рынках сбыта. В 1980-х годах предприятия по производству вторичного алюминия перерабатывали 42—45 % всего алюминиевого лома и отходов производства против 70 % в 1970 г. На долю предприятий по выплавке первичного алюминия приходится 31 % общего объема производства алюминия.

В 1980--1981 гг. специализированные предприятия по производству меди из вторичного сырья перерабатывали около 36 % всего объема ПО и старого лома, предприятия же по производству первичной меди -- около 23 % руды. Практически весь старый лом свинца, цинка, магния также перерабатывают предприятия по выплавке вторичных металлов.

Ниже приведены данные, характеризующие долю металлических отходов в различных отраслях промышленности и при различных производствах, % общего объема потребления стальных полуфабрикатов (по данным американского института чугуна и стали и министерства торговли США):

В настоящее время наша страна выпускает, стали больше, чем любая другая страна в мире.

В то же время изготавливают из нее продукции меньше, чем это возможно, так как недопустимо высока материалоемкость машин. Коэффициент использования металла по стране в среднем составляет 0,7, т.е. почти треть его идет в отходы. В отдельных случаях они достигают 70—80 %. Поскольку совершенствование технологии машиностроения является длительным процессом, проблема вторичного использования металлов будет актуальна еще долгое время.

Рециркуляция цветных металлов. Предприятия по производству вторичного алюминия дают свыше 20 % всей продукции. Рост использования алюминия в автомобильной промышленности и применения машин и технологии по измельчению кузовов легковых автомобилей способствуют расширению сырьевой базы для вторичной металлургии. Темпы прироста производства вторичного алюминия в 1975—1983 гг. составили 13,8 %, а первичного алюминия в 1975—1981 гг. --4,1 %, в 1982—1983 гг. производство первичного алюминия сократилось почти на 30 %. Возможности для более полной утилизации алюминиевого лома будут связаны с преодолением серьезных трудностей в области рециркуляции алюминия, главные из которых — рассеивание отходов и сложность отделения алюминия от остального лома кузовов, автомобилей и бытовых приборов.

В Финляндии используется весь объем алюминиевого лома. Кроме того, алюминиевый лом привозится из зарубежных стран. Сбор алюминиевого лома осуществляется, в основном, организациями по торговле металлоломом, выполняющими сортировку, резку и упаковку лома в штабеля. Через оптовые торговые организации лом поставляется на заводы, использующие его в качестве сырья и имеющие эффективные процессы его предварительной обработки [31].

Первой стадией обработки является дробление. Так как дробленый лом содержит, кроме алюминия, и другие металлы и горючие отходы, механически отделенные фракции сепарируют друг от друга, используя различные способы классификации. Способ плавки в тяжелой среде позволяет извлекать алюминиевую фракцию из других за счет изменения удельного веса промежуточной среды. Остающиеся в продукте дробления влага или возможное масло испаряются в сушильном барабане.

Предварительно обработанный алюминиевый лом загружается в виде шихты в плавильную печь в расплавленный алюминий, легируется и рафинируется в конвертере. Легированный алюминий разливается в высококачественные слитки, которые готовы к последующей обработке. Завод А/О "Куусакоски" в г. Хейнола, производительность которого выше 30 000 т в год, является самым большим в Финляндии предприятием, использующим алюминиевый лом.

Производство меди, как и алюминия, относится к числу энергоемких производств. Многократный рост стоимости энергии послужил основным стимулом к расширению рециркуляции меди в последнее десятилетие. На предприятия по производству вторичной меди приходится около 36 % переработки вторичного сырья как лома, так и отходов производства.

По данным исследования, выполненного институтом им. Баттея в 1969 г., в США фактически было утилизировано около 61 % общего количества медного лома, поддающегося регенерации. Большинство медных отходов поступает в торговые организации металлолома, где лом предварительно сортируют и обрабатывают. Затем лом доставляют в оптовые торговые организации лома, которые продают свой продукт на сырье для последующей обработки.

При предварительной подготовке медь, медные сплавы и остальные металлы отделяются друг от друга механическим путем. На начальной стадии применяют технологию резки и дробления, на второй стадии -- классификацию. Содержащиеся в металлах влага и масло извлекают при сушке. Затем медь плавят в шахтной печи. Плавка производится газом, и процесс имеет весьма высокий энергетический КПД.

Использование медного лома является результатом многолетних разработок. В настоящее время финское акционерное общество "Оутокумпу" использует медный лом, внутренний оборотный лом промышленности и выходящий из потребления лом в количестве 70 000 т в год. [13].

Регенерация цинка большей частью сводится к утилизации быстро возвращающегося лома первичного цинка. В результате принятых предприятиями по производству цинка мер доля регенерированного цинка в общем его потреблении в США возросла с 21 % в 1972 г. до 24,4 % в 1981 г. Структура использования свинца в промышленности США такова, что значительная часть конечного потребления обусловливает его рассредоточение, рассеивание и безвозвратные потери. К числу таких отраслей или производств относятся: производство этилированного бензина, свинцовых красок для наружных работ, электротехническая отрасль и так называемая группа потребления свинца "прочие виды использования". Общее количество свинца, соответствующее этим видам конечного потребления, в 1970 г. составило 538 тыс. т. Определено, что в 1969--1970 гг. было утилизировано лишь около 42 % всего наличного количества свинца, который мог бы быть рециркулирован.

Введенные в 1982 г. Агентством по охране окружающей среды США более жесткие стандарты, регламентирующие содержание свинца в автомобильном бензине, позволят значительно сократить безвозвратные потери свинца. Свинец довольно устойчив к коррозии и регенерация его относительно проста. Этим объясняется большое количество старого лома в общем объеме регенерируемого свинца (вышедшие из употребления свинцовые батареи, свинцовый кабель и прочие изделия): в 1965 г. - 86,1 %, в 1970 и 1980 гг. - соответственно 84,7 и 86,1 %.

С технической точки зрения невозможно найти единого решения для утилизации металлолома всех цветных металлов и сплавов. Для каждого цветного металла в силу его особых свойств и специфики применения разрабатывают особые методы утилизации лома или отходов. По ряду цветных металлов в лабораториях федерального правительства США разрабатываются технологии их утилизации.

В настоящее время США импортирует около 80 % потребляемого в стране никеля. По данным исследований, проведенных Калифорнийским университетом, в 1969 г из всего имеющегося металлолома утилизировано 52 % никеля. Основными источниками вторичного никеля (30 %) являются никелированные металлические изделия и сплавы стали и никеля.

Единственным значительным источником вторичного сырья для производства хрома является лом сплавов нержавеющей стали. Увеличение доли вторичного производства хрома произошло исключительно за счет роста утилизации скрапа нержавеющей стали, который снова идет на производство нержавеющей стали, и таким образом используется имеющийся в нем хром. Основной причиной низкого уровня использования вторичного хрома в США является нерентабельность этого производства, неконкурентоспособность американских предприятий с предприятиями ЮАР и Турции, поставляющими хром на мировой рынок.

Потребление кобальта в США также почти полностью обеспечивается за счет импорта. Фактически же там практикуется вторичное использование кобальта. С этой целью США ежегодно экспортируют в ФРГ около 500 т скрапа кобальта, поскольку такое предприятие имеется только в ФРГ. В Японии работает опытный завод по вторичной переработке катализаторов на основе кобальта, применяемых в нефтехимической и нефтедобывающей промышленности. Мощность завода по переработке вторсырья составляет 20 тыс. т в год.

В СССР технические требования к характеру и виду вторичного сырья, принимаемого на утилизацию, регламентируются ГОСТ 1639—78* "Лом и отходы цветных металлов и сплавов". Использование вторичных металлов и сплавов в черной и цветной металлургии не является единственным путем повышения продуктивности производства. Следует подчеркнуть теснейшую связь комплексного использования сырья с безотходной технологией. Более полное и комплексное извлечение ценных компонентов из сырья имеет первостепенное значение. Одним из эффективных путей решения проблемы комплексного использования сырья служит организация комбинированных производств.

За последние 15—20 лет в системе Минцветмета СССР осуществлены крупные организационно-технические мероприятия, существенно повысившие комплексное использование сырья с одновременным улучшением основных технико-экономических показателей. В результате этих мероприятий предприятия медной, никелевой, свинцово-цинковой, титано-магниевой, алюминиевой, оловянной, ртутной и сурьмяной промышленности не уступают лучшим зарубежным предприятиям аналогичного профиля в части извлечения основных цветных металлов и комплексности использования сырья.

<< | >>
Источник: Пальгунов П.П., Сумароков М.В.. Утилизация промышленных отходов. 1990

Еще по теме 3.7. Характеристика бетонов:

  1. ЛЕКЦИЯ 11. ГЕОПОЛИТИЧЕСКИЕ ХАРАКТЕРИСТИКИ РУССКОЙ КУЛЬТУРЫ
  2. 5.1. Общая характеристика западноевропейского Средневековь (V-XVII вв.)
  3. Приложение 1 Сущностные характеристики типов индивидуального стиля педагогической деятельности в понимании отечественных ученых
  4. § 3. Характеристика грамматических навыков в различных видах речевой деятельности
  5. §2. Краткая характеристика иноязычной лексики и ее методическая типология
  6. 4.8. Экономико-географическая характеристика территории (страны, района и т. д.), содержание и логическая последовательность анализа
  7. 1.1.1. Определение понятия «задержка психического развития» и клинико-психолого-педагогическая характеристика детей
  8. 1.2.1. Определение понятия, причины возникновения, клинико-психолого-педагогическая характеристика
  9. Г л а в а 4 Правовые нормы и правовые предписания. Логическая характеристика и структура правовых норм
  10. § 1. Правовые нормы, их логическая характеристика
  11. § 1. Логико-правовая характеристика субъективных прав и обязанностей
  12. § 1. Понятие и логическая характеристика проблем и вопросов