<<
>>

3.1. Обработка и утилизация отходов пластмасс

Рост добычи природного газа и нефти, а также большой спрос на них в сферах промышленности и бытовых услуг привели к резкому повышению производства изделий из пластмасс и, соответственно, к увеличению отходов.

Пластмассы —это материалы на основе природных или синтетических полимеров, способные под влиянием нагревания и давления формоваться в изделия сложной конфигурации и затем устойчиво сохранять приданную форму.

В зависимости от технологического процесса производства, применяемого наполнителя и связующего (смолы) различают пластмассы композиционные, слоистые и литые, а по природе применяемой смолы -- термореактивные и термопластичные. Последнее имеет большое значение для утилизации пластмассовых отходов.

Пластмассы еще относительно мало используются как вторичное сырье. Это объясняется прежде всего многообразием типов пластмасс и выпускаемых из них изделий, а также сложностью состава, что затрудняет сортировку и переработку пластмассовых отходов, особенно бытовых. Между тем выпуск всевозможных изделий из пластмасс постоянно увеличивается. Так, в США производство пластмасс за последние 25 лет ежегодно возрастало на 11—15 % и выше. Среди капиталистических стран к началу 80-х годов США занимали третье место по годовому потреблению пластмасс на душу населения (35 кг) после ФРГ (44 кг) и Швеции (38 кг).

Пластмассы в первую очередь используются в промышленности для изготовления различного рода полуфабрикатов, изделий и деталей. В ряде случаев ими заменяют дорогостоящие и более тяжелые металлы. Из пластмасс изготовляют различные пленочные материалы для упаковки, а также поддоны, трубы, клеевые составы и т.д. В то же время пластмассовая упаковка вызывает значительное загрязнение окружающей среды, поскольку сразу после использования идет в отходы. Другие пластмассовые изделия переходят в отходы по мере износа.

Табл. 3.1. Срок службы пластмасс

Американские специалисты условно установили для всех пластмассовых изделий три срока службы: краткий, оптимальный и длительный (табл.

3.1).

Основные направления утилизации и ликвидации пластмассовых отходов следующие:

· · захоронение на полигонах и свалках;

· · переработка пластмассовых отходов по заводской технологии;

· · совместное сжигание отходов пластмасс с городским мусором;

· · пиролиз и раздельное сжигание в специальных печах; использование отходов пластмасс как готового материала для других технологических процессов.

Захоронение отходов пластмасс на полигонах и свалках, которое пока наиболее широко распространено у нас в стране, может рассматриваться лишь как временная мера их утилизации, так как пластмассы подвергаются разложению чрезвычайно медленно. При этом методе из сферы возможного полезного использования изымаются тысячи тонн ценного вторичного сырья.

Рис. 60. Схема переработки отходов пластмасс

Переработка пластмассовых отходов по заводской технологии -- наиболее оптимальный метод их использования. При всем разнообразии способов переработки общая схема процесса и применяемого при этом оборудования может быть представлена следующим образом (рис. 60).

Первая стадия обычно включает сортировку отходов по внешнему виду, отделение непластмассовых компонентов, таких как ветошь, остатки бумажной или деревянной тары, металлических предметов и т.д. Вторая стадия — одна из наиболее ответственных в процессе. В результате одно- или двустадийного измельчения материал приобретает размеры, достаточные для того, чтобы можно было осуществлять его дальнейшую переработку.

На третьем этапе дробленый материал подвергают отмывке от загрязнений органического и неорганического характера различными растворами, моющими средствами и водой, а также отделяют его от неметаллических примесей.

Четвертая стадия зависит от выбранного способа разделения отходов по видам пластмасс. В случае, если предпочтение отдается мокрому способу, сначала производят разделение отходов, а затем их сушку. При использовании сухих способов вначале дробленые отходы сушат, а затем классифицируют.

Пятая и шестая стадии состоят в том, что высушенные дробленые отходы смешивают при необходимости со стабилизаторами, красителями, наполнителями и другими ингредиентами и гранулируют. Часто на этой же стадии отходы смешивают с товарным продуктом. Седьмой, заключительной стадией процесса является переработка гранулянта в изделия. Эта стадия практически мало чем отличается от процессов переработки товарного продукта с точки зрения применяемого оборудования, но часто требует специфического подхода к выбору режимов переработки.

Рис. 61. Схема регенерации пластмассовых отходов 1 - конвейер; 2 - дробилка; 3 - воздушный классификатор; 4 - магнитный сепаратор; 5 - промыватель; в - конвейер; 7 - центробежные сушилки; 8 -мельница; 9 - экструдер; 10 - таблетирующке устройство; 11 - бункер для таблеток

Полная реализация описанной схемы на практике является дорогостоящим и трудоемким процессом, поэтому внедрение ее довольно ограничено. Тем не менее известны установки, работающие по данной схеме в г. Фунабаси (Япония) мощностью 1000 т/год и в Англии - мощностью 2000 т/год. На установке в г. Фунабаси (рис. 61) пластмассовые отходы, содержащие до 10 % каучука, металла, стекла и пр., конвейером 1 подают в дробилку 2. Измельченные отходы промывают и пневматическим транспортером направляют в воздушный классификатор 3, где отделяется около 3 % тяжелых отходов. Далее отходы дополнительно измельчают в дробилке второй ступени и пропускают через магнитный сепаратор для удаления оставшихся металлов. Затем измельченные отходы еще раз промывают водой и детергентами и сушат в центробежной сушилке 7. Высушенные отходы перемалывают в турбинной мельнице 8 для предотвращения комкования и подают в экструдер 9, где с помощью таблетирующего устройства 10 материал превращается в таблетки.

На установках такого типа перерабатывают, в основном, отходы потребления. Что же касается ПО, то схема процесса их переработки нередко упрощается за счет исключения ряда стадий (особенно 3, 4, 5) и часто сводится к следующей:

1,2,...б,7.

На рис. 62 показана схема линии переработки отходов полиэтиленовой пленки.

Если удается добиться достаточно высокой степени очистки и выделения индивидуальных отходов из смесей, а также если отходы предварительно рассортированы по видам пластмасс, их переработка во многом сходна с переработкой первичных пластмасс. Одним из существенных моментов при этом является способность полимеров сохранять или изменять свойства в процессе многократной переработки, поскольку от этого во многом зависит целесообразность самой переработки отходов. Изучение влияния кратности переработки большинства полимеров на их физико-механические свойства показало, что изменение последних связано, как правило, со снижением молекулярной массы пластмасс, разветвленностью их структуры и рядом других показателей. Снижение молекулярной массы пластмасс при многократной переработке приводит к определенным изменениям их прочностных показателей, хотя в качественном отношении они невелики.

Обычно содержание отходов в смеси с товарным продуктом не должно превышать 20 %, так как в противном случае резко ухудшается глянец изделий, получаемых при переработке гранулянта, появляется шероховатость на их поверхности. Гранулянт наиболее распространенного полимера — полиэтилена, как правило, перерабатывают в пленку, которая используется в сельском хозяйстве для неответственных целей, или идет на изготовление мешков для мусора. Пленку получают на обычной установке для выпуска рукавной пленки, отбирая гранулы с ПТР 1,3-2 г/10 мин.

Рис. 62. Линия для переработки отходов полиэтиленовой пленки

1 - гранулятор; 2 - ванна охлаждения:

3 - гранулирующая головка: 4 конус

но-шнековый экструдер; 5 - дозирующий питатель; 6 - пневмотранспорте?:

7 - измельчитель; 8, 9 - шкафы управления; 10 - пульт управления

Для переработки отходов методом литья под давлением, как правило, применяют машины, работающие по типу интрузии с постоянно вращающимся шнеком.

Его конструкция такова, что обеспечивает самопроизвольный захват и гомогенизацию отходов.

Особенностью повторной переработки поливинилхлорида (ПВХ) является необходимость его дополнительной стабилизации. Отходы мягкого ПВХ используют главным образом для получения бытовых пленочных изделий (пленок, скатертей, накидок, фартуков и пр.). Для этого 20 % отходов измельчают на смесительных вальцах, смешивают с товарным ПВХ, стабилизаторами, красителями и смазками, после чего пропускают через систему подогревательных и отделочных вальцов.

Большой опыт, достигнутый при переработке отходов некоторыми зарубежными фирмами, позволяет использовать индивидуальные полимерные отходы без смешения с товарным продуктом. Однако в этом случае важное значение приобретает сортировка, классификация и дополнительное смешение материала с необходимыми добавками.

Стабильность качества материалов из отходов позволяет систематически использовать их для получения определенных пластмассовых изделий. Так, из отходов полиэтилена высокого давления (ПЭВД) изготовляют мешки для мусора, трубы для защиты кабеля, хозяйственные ведра, прокладки и угольники, уплотнительные профили, пленки, применяемые в сельском хозяйстве и строительстве. Отходы литьевого полиэтилена низкого давления (ПЭНД) перерабатывают в элементы строительных опалубочных конструкций, прокладки, ведра, каркасы светильников, а полипропиленовые отходы - в текстильные шпули, детали сантехники, дверные ручки, ручки чемоданов, ящики для растений.

Другая тенденция утилизации сводится к разработке способов и соответствующего технологического оборудования для переработки смеси отходов без предварительного разделения. Это делает процесс утилизации более дешевым, однако физико-механические свойства изделий, полученных таким образом, гораздо ниже.

Все более широкое распространение для использования отходов пластмасс получает многокомпонентное литье, при котором изделие имеет наружный и внутренний слои из различных материалов. Наружный слой — это, как правило, товарные пластмассы высокого качества, стабилизированные, окрашенные, имеющие хороший внешний вид.

К внутреннему слою не предъявляют высоких требований ни по физико-механическим показателям, ни по внешнему виду. Материал может быть не стабилизирован и не окрашен. В состав этого слоя часто включают такие дешевые наполнители как тальк, сульфат бария, стеклянные и керамические шарики, вспенивающий агент. Одна из типичных рецептур внутреннего слоя, % по массе, приведена ниже:

Такой состав внутреннего слоя позволяет значительно снизить стоимость изделий, с одной стороны, и утилизировать отходы — с другой. Изделия с применением внутреннего слоя, называемые сэндвич-конструкциями, применяют в основном при изготовлении мебели и предметов домашнего

обихода.

Совместное сжигание отходов пластмасс с бытовым мусором. Большое количество пластмасс попадает в городской мусор.

В США, например, в мусор ежегодно поступает свыше 5 млн. т пластмассовых отходов. В настоящее время в США и странах Западной Европы содержание пластмасс в мусоре составляет 2--4 %, в нашей стране -- 1,5--2 %. Согласно прогнозам, во Франции содержание пластмасс в мусоре в ближайшие 10 лет возрастет до 5 %, в Великобритании - - до 6 %. Особое место занимает Япония, где содержание пластмасс в мусоре составляет свыше 9 % всей его массы.

За последнее время в странах Западной Европы, США и Японии, а также в ряде городов СССР складирование ТБО в значительной мере вытесняется их сжиганием на мусоросжигательных заводах. При этом сжиганию подвергаются и находящиеся в мусоре отходы пластмасс, попадающие туда из домовладений.

В некоторых странах практикуется прием на мусоросжигательные заводы небольшого количества ПО, включающих в себя пластмассы. В СССР сжигание таких отходов на мусоросжигательных заводах не допускается с целью предотвращения загрязнения воздушного бассейна.

Пиролиз. В последнее время при утилизации и обработке отходов пластмасс все большее применение находят термические методы. Они особенно распространены в тех случаях, когда отходы не находят практического использования и не могут быть утилизированы путем переработки в изделия или различные композиции. Помимо описанного выше способа сжигания пластмасс совместно с городским мусором, в промышленно развитых странах Западной Европы, Японии и США все большее распространение получает пиролиз. При пиролизе пластмасс, как и при пиролизе ТБО, стали отходить от стандартных способов их газификации косвенным нагревом и переходят на непосредственный нагрев с тем, чтобы повысить коэффициент теплопередачи, увеличить производительность установок и снизить капиталовложения в их строительство и эксплуатацию.

С этой целью разрабатываются разные системы непосредственного нагревания: например, в США исследуются вращающиеся печи, вертикальные реакторы шахтного типа, системы с псевдоожиженным слоем, подвижные топочные решетки и др. В табл. 3.2. приведены данные о теплоте сгорания продуктов, полученных из разных пластмасс при различных температурах, которые свидетельствуют о более высокой теплоте сгорания жидкостей по сравнению с газами и низкосортными твердыми продуктами пиролиза.

3.2. Теплота сгорания продуктов полученных из пластмасс посредством пиролиза.

Рис. 63. Схема специализированной печи для сжигания плавящихся отходов

1 - камера плавления: 2 - решетка; 3 - стенка камеры плавления: 4 - стенка камеры сгорания; 5 -барботажная ванна: 6 - камера сгорания; 7 - подана вторичного воздуха; 8 - труба для подачи первичного воздуха; 9 - вертикальный канал; 10 - расплав; П - ванна расплава

Раздельное сжигание пластмассовых отходов. Пластмассовые отходы можно сжигать в описанных в гл. 2 промышленных печах различных конструкций: барабанных, многоподовых, с кипящим слоем и др. Особенностью термопластов является то, что при высоких температурах они плавятся. Это свойство отходов при сжигании их в печах с колосниками может привести к тому, что расплав попадет сквозь прозоры в подколосниковые пространства и затвердеет там, создав трудности для эксплуатации печи.

Для сжигания плавящихся отходов термопластов в п/о "Техэнергохимпром" разработаны специальные конструкции печей, одна из которых показана на рис. 63. Твердые отходы в виде кусков подают на решетку 2. Часть высокотемпературных продуктов полного сгорания, полученных при барботажном сжигании в ванне 5, направляют над слоем отходов, а другую часть -- под слой. Вследствие незначительного содержания кислорода в этих продуктах отходы в слое не горят, а лишь плавятся. Расплавленные отходы в виде капель и струй попадают навстречу потоку высокотемпературных продуктов полного сгорания, подаваемых под слой, и перегреваются. Расплавленные отходы собираются под слоем и поступают на барботажное сжигание. Находящиеся под слоем и на барботажном сжигании расплавленные и перегретые отходы образуют общий уровень расплава. При барботажном сжигании через расплав отходов из патрубка 8 подают первичный окислитель. Происходит горение расплавленных отходов над слоем в потоке вторичного воздуха с образованием высокотемпературных продуктов полного сгорания, которые разделяются на два потока и направляются — один над слоем твердых отходов, другой — под слой, пропуская этот поток над поверхностью расплава. Соотношение потоков продуктов полного сгорания регулируется уровнем расплава. При увеличении количества расплавленных отходов под слоем уровень расплава поднимается, и площадь сечения для прохода продуктов полного сгорания уменьшается. В результате уменьшается количество теплоты, передаваемой на плавление отходов, и количество расплава; уровень его под слоем понижается и соответственно изменяется соотношение потоков высокотемпературных продуктов полного сгорания.

С целью улучшения условий горения пластмассовых отходов и снижения теплоты сгорания иногда их предварительно обрабатывают. В США и Канаде перед сжиганием проводят брикетирование отходов пластмасс с текстильными и бумажными отходами. Эти брикеты с теплотой сгорания 14,3—17,8 МДж/кг сжигают на городских ТЭЦ вместе с углем (соотношение "уголь:брикеты" — 7:1), не внося никаких изменений в конструкции топок и технологический режим горения.

Термическое обезвреживание пластмасс методом сжигания целесообразно использовать только в тех случаях, когда не могут быть применены более рациональные методы регенерации — путем повторной переработки или в композициях и пиролизе.

Использование отходов пластмасс как готового материала для других технологических процессов. Отходы синтетических материалов легкой и др. отраслей промышленности, не находящие применения, могут использоваться как ценные исходные материалы для других технологических процессов, например для очистки промышленных сточных вод.

На многих предприятиях страны образуются отходы в виде синтетических волокон, пряжи, обрезков и т.п. Так, на Димитровоградском комбинате технических сукон ежегодно образуется до 200 т мелких отходов сипрона и вазопрона (ширина 10—12 см, длина до 2 м), которые прессуются в кипы по 100—150 кг. Сипрон и вазопрон представляют собой отходы нетканых синтетических материалов на основе нитроновых и лавсановых волокон различных метрических размеров.

Известно, что для тонкой очистки сточных вод от нефтепродуктов наиболее пригодны синтетические материалы и активированные угли. Однако последние дороги и дефицитны.

МосводоканалНИИпроектом было предложено использовать отходы синтетических волокон и нетканых материалов для очистки промышленных сточных вод, в соответствии с чем проводились испытания сорбционной способности различных синтетических материалов: полипропилена, лавсана, сипрона, нитрона, капрона и ряда других, в том числе несинтетического происхождения, являющихся отходами производства. Результаты испытаний приведены в табл. 3.3.

Метрические номера 400--3000 указывают на диаметр волокна, который меняется от 52 до 18 мкм соответственно. С возрастанием номера уменьшается диаметр волокна и растет его поверхность.

При контакте синтетических волокон с нефтепродуктами происходит не только молекулярная адсорб11ия нефтепродуктов, но и ярко выраженная адгезия за счет электрических некомпенсированных положительных зарядов, которые имеет синтетическое волокно.

Частицы нефтепродуктов, обладающие в сточных водах отрицательным зарядом, хорошо притягивается к полипропилену. Атомы азота в нитрильных группах нитрона и полиак-рилонитрила имеют формулу

Они содержат некомпенсированные положительные заряды, так как максимальная валентность азота равна +5, а в данном случае он проявляет валентность +3. Поскольку молекулы нитрона обладают положительными зарядами, он также может адсорбировать нефтепродукты.

Капрон — полиамидное волокно [ - HN (CH2)5 CO -]n, в котором атом азота также проявляет валентность +3 и имеет некомпенскрованный положительный заряд, что является причиной адсорбционно-адгезионной способности капрона при контакте с нефтепродуктами.

Положительный опыт очистки моечных и ливневых вод способствовал разработке МосводоканалНИИпроектом серийно выпускаемой в настоящее время очистной установки "Кристалл", в которой используются отходы нетканых синтетических материалов [14]. Качество очистки воды позволяет осуществлять замкнутый водооборот. Установка серийно изготовляется заводом "Водоприбор" (Москва). Отходы сипрона для нее поставляет Димитровоградский комбинат технических сукон. Сипрон и вазопрон (в виде отходов) используют также в очистных сооружениях отстойного типа для доочистки воды. Зависимость качества очистки воды от высоты слоя нетканого синтетического материала показана на рис. 64.

Специалистами Харьковского филиала Московского института ВНИИВОДГЕО были исследованы свойства, фильтрующая и сорбционная способности пенополиуретана и его отходов для очистки нефтесодержащих сточных вод. Отходы пенополиуретана образуются во многих отраслях промышленности. Их широко используют для очистки нефтесодержащих сточных вод.

Кроме утилизации и обезвреживания пластмассовых отходов, следует отметить их использование в строительстве. В большинстве асфальтовых дорожных покрытий основными

связующими являются битумы различной природы. Обладая рядом достоинств в качестве связующего каменной основы и имея невысокую стоимость, битумы, в состав которых входят полярные соединения, отличаются недостаточной водостойкостью. Их прочностные показатели также сравнительно невысоки. Все это в значительной степени ухудшает свойства асфальтовых покрытий на основе битумов и сокращает сроки их эксплуатации. Использование отходов полиолефинов в композиции с битумом является одним из традиционных направлений, позволяющих модифицировать свойства покрытий.

рис. 64. Зависимость качества очистки сточных вод от высоты слоя синтетического нетканого материала

1 - начальная концентрация нефтепродуктов (100мг/л): 2- начальная концентрация нефтепродуктов (200 мг/л): 3 - начальная концентрация нефтепродуктов (1000 мг/л)

В строительстве отходы пластмасс применяют в композициях с традиционными строительными материалами с целью модификации их свойств, для получения звукоизоляционных плит и панелей, а также герметиков, используемых при возведении зданий и гидротехнических сооружений и т.д. В СССР значительный опыт утилизации отходов пластмасс накоплен Всесоюзным научно-исследовательским институтом вторичных ресурсов (ВНИИР) Госснаба СССР.

У нас в стране поливинилхлоридные (ПВХ) отходы составляют большую часть по объемам образования и накопления. Их неиспользуемые ресурсы по стране достигают более 100000 т/год. Лишь в Москве и области они составляют более 10000 т/год. Образуются эти отходы в виде обрезков, высечек, заправочных концов, полос и пр. при производстве пленочных материалов, искусственных кож и изделий из них.

Кроме того, отходы ПХВ образуются при производстве изделий строительного назначения (линолеум, обои, длинномерные изделия). На предприятиях используют, в основном, пластифицированные (содержащие более 20 % пластификатора) технологические отходы ПВХ как добавку к первичному сырью. Неиспользуемыми остаются пластифицированные отходы на тканевой основе и слабопластифицированные отходы в виде пленок и длинномерных изделий.

Институтом ВНИИР разработаны и внедрены в промышленность технологические процессы переработки неиспользуемых ПВХ отходов в изделия строительного назначения (ли нолеумная плитка и пленка).По физико-механическим, эксплуатационным и санитарно-гигиеническим показателям линолеумная плитка из вторичного сырья не уступает такой же плитке из первичного сырья. Ежегодный .выпуск таких материалов составляет более 1 млн. м2 (при потребности 19 млн. м2).

Во ВНИИРе также разработаны технологии получения из отходов термопластов втулок, труб, нетканых синтетических материалов и т.п.

Создание полимеров с регулируемым сроком службы. В странах с развитой промышленностью отходы полимерных материалов, чрезвычайно медленно разлагающиеся в естественных условиях, являются серьезным источником загрязнения окружающей среды. Особую опасность представляет пластмассовая тара разового пользования, пленка и упаковочные материалы, которые, как правило, не попадают в общую систему сбора, составляя так называемый пластмассовый мусор.

Для сокращения времени утилизации отходов пластмасс в последнее время разрабатываются и выпускаются специальные типы полимеров с регулируемым сроком службы. Как правило, это фото- и (или) биоразрушаемые полимеры, которые под действием света, тепла, воздуха и микроорганизмов, содержащихся в почве, разлагаются до низкомолекулярных продуктов и ассимилируются в почве, включаясь таким образом в замкнутый биологический цикл. Отличительной особенностью этих полимеров является способность сохранять потребительские свойства в течение всего необходимого периода эксплуатации и лишь после истечения этого периода претерпевать физико-химические и биологические превращения, приводящие к деструкции и разрушению.

Фоторазрушаемые полимеры. Большая часть разработанных в настоящее время полимеров с регулируемым сроком службы представляет собой фоторазрушаемые полимеры, которые благодаря присутствию в них специальных групп или соединений способны разлагаться в естественных условиях до низкомолекулярных полимеров (молекулярная масса 1000 и меньше), поглощаемых в дальнейшем микроорганизмами атмосферы и почвы. Как правило, для придания полимерам способности разрушаться под действием света используют специальные добавки или вводят в состав полимера молекулярные светочувствительные группы. Для того чтобы такие полимеры нашли практическое применение, они должны удовлетворять определенным требованиям:

· · в результате модификации полимера не должны существенно изменяться его эксплуатационные характеристики;

· · добавки, вводимые в полимер, не должны быть токсичными, поскольку полимеры предназначаются в первую очередь для изготовления тары и упаковки;

· · полимеры должны перерабатываться обычными методами, не подвергаясь при этом разложению;

· · необходимо, чтобы изделия, полученные из таких полимеров, могли храниться и эксплуатироваться длительное время при отсутствии прямых ультрафиолетовых лучей;

· · время от изготовления полимера до его разрушения должно быть известно; необходимо его варьирование в широких пределах;

· · продукты разложения полимеров не должны быть токсичными.

С точки зрения фотохимии возможность создания фоторазрушающихся полимеров обусловливается тем, что энергия диссоциации основной связи С —- С большинства полимеров составляет 350 кДж/моль, в то время как энергия естественных ультрафиолетовых лучей находится в пределах 400—600 кДж/моль. Однако эта энергия будет направлена на разрушение полимера лишь в том случае, если, во-первых, полимер способен поглощать свет с длиной волны 400--100 нм и если, во-вторых, поглощенная энергия передается другим молекулам таким образом, чтобы они претерпели химические превращения, в результате которых происходит деструкция.

Упаковочные полимеры с регулируемыми сроками службы стабильны внутри помещения, так как оконное стекло абсорбирует ультрафиолетовое излучение, способное вызывать деструкцию. Стойкость материала к действию солнечного света за стеклом толщиной 7 мм в 10 раз выше, чем на открытом воздухе.

Одним из наиболее известных способов создания фотораз-рушаемых полимеров является введение в полимерную цепь группировок, содержащих карбонильные группы.

Разработанные в Канаде фоторазрушаемые полимеры с торговым названием "Эколиты" предусматривают введение светочувствительных кетонных группировок в полимер в процессе сополимеризации. Это обеспечивает абсорбцию полимером ультрафиолетовых лучей с длиной волны около 335 нм и последующую деструкцию по реакции Норриша.

Скорость фотодеструкции, как правило, пропорциональна концентрации кетонных групп в полимере. Таким образом, изменяя состав сополимера, можно направленно регулировать время разрушения полимеров (до достижения хрупкости) от 3 до 200 сут. Этот факт был использован голландской фирмой"Ван Леер" при разработке товарных марок эколитов на основе полистирола ("Эколит ПС"), полиэтилена ("Эколит ПЭ") и полипропилена ("Эколит ПП"). Определенным удобством эколитов является возможность использования их в качестве концентратов, которые смешивают в различных соотношениях с немодифицированным полимером, регулируя таким образом скорость фоторазрушения полученных материалов.

При практически одинаковых исходных физико-механических показателях фоторазрушаемых и немодифицированных полимеров скорость изменения прочностных свойств эколитов в процессе фотостарения значительно выше, что определяется резким снижением молекулярной массы этих материалов. Под действием ультрафиолетового облучения в искусственных или естественных условиях фоторазрушаемые материалы сначала растрескиваются, затем рассыпаются на кусочки различных размеров, в дальнейшем превращаясь в порошок.

Биоразрушаемые полимеры. Большинство полимерных материалов, выпускаемых в настоящее время промышленностью, отличается исключительно высокой стойкостью к воздействию микроорганизмов. Это является одной из основных причин, обусловивших широкое применение таких материалов в народном хозяйстве. Однако, если рассматривать отработанные полимеры как источник загрязнения окружающей среды, то это их достоинство — биостойкость -- превращается в серьезный недостаток. Полимерные отходы в естественных условиях разлагаются чрезвычайно медленно и практически не подвержены действию микроорганизмов воздуха и почвы.

Один из путей создания биоразлагаемых полимеров уже описан выше: фоторазрушаемые композиции после выдержки в атмосферных условиях настолько сильно деструктируют, что легко усваиваются микроорганизмами, содержащимися в почве. По этой причине фоторазрушаемые полимеры часто называют биоразрушаемыми.

Другой способ создания полимеров, разлагающихся под влиянием микроорганизмов, заключается в добавке в полимерную матрицу веществ, которые сами легко разрушаются и

усваиваются микроорганизмами.

Биоразрушаемые материалы могут быть получены модификацией природных полимеров, которые по прочностным показателям часто приближаются к пластмассам. Так, в Японии практическое применение нашли привитые сополимеры крахмала и метилакрилата, пленки которых используются в сельском хозяйстве для мульчирования почвы. Прививку метилакрилата на крахмал осу1цествляют в присутствии Се(NH4)2 (NО3)6- Пленки из сополимера определенное время обладают высокими физико-механическими показателями, однако в естественных условиях быстро подвергаются деструкции.

Существует и другой способ сделать полимеры биоразлагаемыми — с помощью специальных штамов микроорганизмов, способных разрушать полимеры. Так, японскими учеными выведены из почвы бактерии PseudomonasSSP, которые вырабатывают фермент, расщепляющий поливиниловый спирт. После разложения фрагменты полимера полностью усваиваются бактериями. Используя это, японская фирма "Кураре" применила этот фермент в качестве добавок к активному илу на водоочистных сооружениях для более полной очистки сточных вод от поливинилового спирта.

<< | >>
Источник: Пальгунов П.П., Сумароков М.В.. Утилизация промышленных отходов. 1990

Еще по теме 3.1. Обработка и утилизация отходов пластмасс:

  1. 4.4. Отходы производства гидролизного этилового спирта, кормовых дрожжей и пути их утилизации
  2. Утилизация сгущённых осадков очистных сооружений.
  3. РАСТВОР ДЛЯ ОБРАБОТКИ МАСЛИН ИЗ ОТХОДОВ ОБРАБОТКИ МАСЛИН
  4. § 9. Утилизация отходов автотранспортных средств
  5. Основные методы обезвреживания и утилизации отходов. 
  6. Технология проведения очистки и утилизации отходов нефтеперерабатывающих заводов
  7. Переработка и утилизация твердых отходов. 
  8. 2.4. РЕШЕНИЕ ВОПРОСОВ ПЕРЕРАБОТКИ,УТИЛИЗАЦИИ, ЛИКВИДАЦИИИЛИ ЗАХОРОНЕНИЯОБРАЗУЮЩИХСЯ ОТХОДОВ
  9. 5.2.2. РЕЦИКЛИНГ ПЛАСТМАСС ОБЩИЕ ПОЛОЖЕНИЯ
  10. ПРЕДВАРИТЕЛЬНЫЕ ОПЕРАЦИИРЕЦИКЛИНГА ПЛАСТМАСС
  11. Утилизация отходов
  12. 2.9. Механическая обработка твердых отходов
  13. 3.1. Обработка и утилизация отходов пластмасс