<<
>>

4.9. Основные методы регенерации отработанных минеральных масел

Основную часть нефтеотходов, собираемых и накапливаемых на промышленных и транспортных предприятиях, составляют отработанные масла. В настоящее время в мире вырабатывается свыше 30 млн.

т минеральных масел. Около половины этого количества безвозвратно теряется в процессе использования, а свыше 15 млн. т ежегодно сливается из машин и механизмов как полностью или частично потерявшие эксплуатационные свойства и требующие замены. Подсчитано, что на долю отработанных масел приходится более 60 % всех потерь нефтепродуктов .

Согласно ГОСТ 21046—86 "Нефтепродукты отработанные. Общие технические условия", в зависимости от целевого назначения масла подразделяются на следующие группы:

ММО -- масла моторные отработанные (автотракторные, дизельные, авиационные, в том числе моторные масла, применяемые в трансмиссиях и гидравлических системах);

МИО -- масла индустриальные отработанные (турбинные, компрессорные, гидравлические, трансформаторные и т.д.);

СНО — смеси нефтепродуктов отработанных (нефтепродукты, собранные при зачистке резервуаров, трубопроводов и другие). Сюда же относятся нефтепродукты, извлекаемые из нефтесодержащих сточных вод на очистных сооружениях.

В соответствии с рядом принятых постановлений директивных органов, отработанные нефтепродукты подлежат повторному использованию как ценные материально-технические ресурсы. В связи с этим все предприятия и организации обязаны осуществлять сбор, учет, рациональное использование и сдачу вышеназванных групп отработанных нефтепродуктов на базы нефтесбытовых организаций для передачи их на пункты регенерации, нефтеперерабатывающие заводы и т.д.

Большая часть индустриальных и трансформаторных масел, как правило, регенерируется на местах потребления. Моторные масла сдают на нефтебазы. Ответственность за сбор и утилизацию отработанных масел возложена на Главнефтебазы союзных республик и п/о "Вторнефтепродукт" Госкомнефтепродукта РСФСР.

4.6. Нормы для приема нефтепродуктов на регенерацию

На рис. 81 показаны источники образования отработанных масел и направления их использования. В процессе работы машин и механизмов масло окисляется, загрязняется продуктами износа деталей, металлической стружкой и пылью. В него попадают вода, топливо. Загрязнение продолжается при сборе и транспортировании масел. Наиболее загрязненными и трудно поддающимися очистке оказываются масла, слитые из картеров поршневых двигателей, содержащие продукты окисления и углеродистые частицы в мелкодисперсном состоянии. Из-за этих частиц масла плохо фильтруются и разделяются центробежным и другими способами.

По физико-химическим показателям отработанные нефтепродукты должны соответствовать требованиям и нормам, приведенным в табл. 4.6.

По согласованию с нефтесбытовыми организациями иногда допускаются к приему отработанные нефтепродукты с содержанием механических примесей и воды, превышающим указанные в данной таблице. В таких случаях количество механических примесей и воды сверх приведенных норм исключают из массы продукта.

Наиболее перспективным и рациональным направлением использования отработанных минеральных масел является их переработка на маслорегенерационных заводах с получением отдельных компонентов для повторного использования. Методы переработки или регенерации отработанных масел можно разделить на физические, физико-химические и комбинированные. К физическим методам очистки относятся: отстаивание, центрифугирование, фильтрация, отгон легких топливных фракции, вакуумная перегонка. Последний способ является наиболее эффективным. Используя его, можно получать масла с минимальной зольностью, коксоемкостью, хорошими показателями по цвету, незначительным содержанием асфальтосмолистых веществ.

Из физико-химических методов регенерации используются: коагуляция загрязнений различными ПАВ, контактная очистка отбеливающими глинами и активированными адсорбентами, активная очистка пропаном, фенолом и пр.

К химическим методам очистки относятся сернокислотная и щелочная. Серная кислота активно воздействует на большинство загрязнений и продукты окисления масла: смолы, асфальтены, нафтеновые кислоты, серные соединения, присадки. Однако применение серной кислоты связано с образованием трудно утилизируемого кислого гудрона. Поэтому сернокислотный способ заменяют в последнее время более рациональными процессами, например гидрогенизационными, позволяющими существенно улучшить качество регенерированных масел.

В ряде случаев из-за многообразия продуктов загрязнения свойства масел восстанавливают комбинированными способами. Подробнее сущность упомянутых выше способов изложена в специальной литературе.

Одним из путей утилизации отработанных масел является их смешение с сырой нефтью и совместная переработка по полной технологической схеме. Этот способ является наиболее простым и распространенным, но не лучшим вариантом их использования. Повышенная зольность масел и содержание в них высокоэффективных диспергирующих присадок отрицательно влияют на процесс обессоливания нефти. Добавление даже 1 % отработанных масел приводит к быстрому нарушению работы электродегидраторов. Поэтому это количество является фактическим пределом приема масел на нефтеперерабатывающие заводы.

Простым методом подготовки загрязненных и обводненных нефтепродуктов к сдаче на нефтебазы для последующей глубокой очистки, утилизации на самом предприятии или передачи другим организациям является их отстаивание с подогревом в разделочных резервуарах. Этот метод основан на принципе отделения нефти от воды за счет разности их плотностей и возникновения некоторой подъемной силы, действующей на частицы нефтепродуктов. Скорость всплывания частиц зависит от их размеров и сопротивления воды. Для мелких частиц размером в несколько микрон, действие молекулярных сил оказывается соизмеримым с действием подъемной силы и процесс всплытия замедляется.

Подогрев обводненной смеси нефтепродуктов интенсифицируется повышением ее температуры, происходящим из-за различных коэффициентов теплового объемного расширения воды и нефти.

С увеличением температуры нефтеводяной смеси объем нефтепродуктов увеличивается быстрее, чем объем воды, в результате чего возрастает подъемная сила, действующая на частицы. Кроме того, при понижении вязкости воды и нефтепродуктов сопротивление воды всплытию частиц уменьшается. Однако при повышении температуры более 70°С начинают проявляться отрицательные факторы (конвективное перемешивание), замедляющие процесс отстоя. В связи с этим нефтеводяную смесь не рекомендуется подогревать выше 60°С. На практике подогрев нефтеводяной смеси обычно ограничивают 25--30°С, так как дальнейшее увеличение температуры связано со значительным расходом пара, эффект же при этом малоощутим.

Переработку отработанных моторных масел по заводской технологии затрудняют содержащиеся в них присадки. Часть присадок, перешедших в нерастворимое состояние, а также часть присадок, абсорбированных на продуктах загрязнений, можно удалить из отработанного масла отстоем или фильтрацией с применением разбавителя и коагулянта. Растворимая или активная, часть присадок может быть в принципе сохранена в масле или продукте его вторичной перебработки. Однако это требует сбора и переработки отработанных масел строго по сортам, а также разработки индивидуальной технологии переработки каждого сорта масла. Поэтому при массовом производстве наиболее приемлемым путем выработки регенерированного масла стабильного качества является удаление в процессе переработки всей присадки, в том числе остатков ее активной части. Содержание присадок в моторных маслах составляет 3-15 %, а для основного ассортимента масел -- 2-6 %.

Суммарные потери присадки при ее удалении из масла составляют около 3 % обезвоженного сырья. На основании данных о составе отработанных масел их суммарные потенциальные потери оцениваются следующими цифрами (табл.4.7). Таким образом, из смеси сильно загрязненных отработанных масел можно получить около 70 % полностью восстановленного масла. Для получения регенерированных отработанных индустриальных масел по ТУ 112-003-84, а также при необходимости очищенных технологических масел по ТУ 112-023-85 и ТУ 112-026-85 разработана установка УПТМ-8К (рис.

82).

4.7. Примеси в отработанных маслах, %

Рис. 82. Функциональная схема установки УПТМ-8К

I - фильтр грубой очистки; 2 - насос-дозатор НД; 3 - агрегат электронасосный; 4 - узел выдачи готовой продукции; 5 - емкость двухсекционная; 6 - мешалка контактная; 7 - насос плунжерный; 8 - насос-дозатор; 9 - фильтр-пресс; 10 - емкость приготовления коагулянта;

II - насос ХМ; 12 - фильтр грубой очистки; 13 - насос-дозатор НД; 14 - смеситель; 15 - автоклав-отстойник; 16 - электропечь; 17 - испаритель; 18 - насос вакуумный ВВН1-1.5; 19 - сборник отгона; 20.21 - холодильник-конденсатор; 22 - адсорбер; 23 - испаритель; 24 -насос-дозатор; 25 - холодильник; 26 - насос-дозатор НД; 27 - теплообменник; 28 - холодильник; 29 - фильтр тонкой очистки

В процессе работы установки отработанное масло насосом 2 через фильтр грубой очистки 1 и теплообменник 27 подается в электропечь 16, в которой нагревается до 200°С и далее подается в испаритель 17, где из масла удаляются вода и легколетучие фракции. Далее масло насосом 26 подается в смеситель 14, куда из емкости приготовления коагулянта 10 насосом 13 подается 20%-ный раствор коагулянта в количестве 2—3 % производительности установки. Перемешанное с коагулянтом масло поступает в автоклав-отстойник 15, где происходит процесс отстаивания продукта и удаления коагулированных частиц. Затем из автоклава-отстойника масло подается во второй испаритель 23 для удаления следов воды. С нижней его части масло насосом 24 через теплообменник 27 и холодильник 28 подается в контактную мешалку 6, а затем в фильтр-пресс 9 для проведения контактной доочистки отбеливающей глиной и удаления механических примесей с размером частиц более 1--2 мкм. Очищенное масло поступает в двухсекционную емкость 5, откуда насосом 4 перекачивается в емкости регенерированного масла либо возвращается на повторную очистку.

Для получения технологических масел предусмотрен фильтр тонкой очистки 29. В этом случае масло после испарителя 23, минуя контактную мешалку 6 и фильтр-пресс 9, подается на фильтр тонкой очистки 29, затем в двухсекционную емкость 5, откуда перекачивается в резервуары регенерированного масла.

Регенерация отработанных индустриальных и трансформаторных масел производится в основном на местах их потребления. Для этого разработаны различные варианты мас-лорегенерационных установок: УРИМ-0,8; УРИМ-100; УРТМ -200М; УФСН -1 и другие. Для регенерации масел холодильных машин используется установка УРМХМ -1,6.

В ряде случаев жидкие нефтеотходы на основе отработанных масел по своему составу и свойствам не соответствуют нормативным требованиям приема на регенерацию. В табл. 4.8 приведена физико-химическая характеристика нефтесодержащих отходов, получаемых на различных предприятиях.

Как видно из таблицы, нефтепродукты группы СНО, собираемые на очистных сооружениях, в отличие от раздельно собираемых масел групп ММО и МИО по некоторым показателям не соответствуют ГОСТ 21046—86 и должны подвергаться дополнительной обработке или по возможности направляться на сжигание в качестве котельного топлива.

<< | >>
Источник: Пальгунов П.П., Сумароков М.В.. Утилизация промышленных отходов. 1990

Еще по теме 4.9. Основные методы регенерации отработанных минеральных масел:

  1. 9.3. Основные методы оптимизации структуры капитала
  2. 2.1. Основные методы обучения праву
  3. 3. Об основных методах регионального экономического прогнозирования. Выбор методов прогнозирования
  4. § 6. Основные методы игровой психологической коррекции в детском возрасте
  5. понемногу вытесняется более общим понятием странового риска. ОСНОВНЫЕ МЕТОДЫ ОЦЕНКИ РИСКОВ
  6. 14.2. Основные методы этнопсихологических исследований
  7. ТЕХНОЛОГИЯ И ОБОРУДОВАНИЕ ДЛЯ ПОДГОТОВКИ ИСХОДНЫХ ФОРМОВОЧНЫХ МАТЕРИАЛОВ И РЕГЕНЕРАЦИИ ОТРАБОТАННЫХ СМЕСЕЙ
  8. НИКЕЛЬ ИЗ ОТРАБОТАННЫХ КАТАЛИЗАТОРОВ
  9. 1.1.5. Основные методы психологических исследований.
  10. ГЛАВА 18 ОСНОВНЫЕ МЕТОДЫ ИЗУЧЕНИЯ РЕЛЬЕФА
  11. Основные методы исследования мотивации учения
  12. Основные методы науки
  13. Основные методы обезвреживания и утилизации отходов. 
  14. Физико-химические принципы основных методов анализа
  15. Нормирование шума на рабочих местах. Основные методы и средства защиты работающих от воздействия шума
  16. Основные методы исследования систем
  17. 3.9. Классификация методов обработки отработанных концентрированных растворов электролитов
  18. 4.9. Основные методы регенерации отработанных минеральных масел
  19. 4.10. Обработка смазочно-охлаждающихжидкостей и масляных эмульсий