<<
>>

ПРИРОДНЫЕ БИОГЕОЦЕНОЗЫ

Каждый, кто изучает сельскохозяйственную экологию, должен знать, как устроены природные биогеоценозы. Природные БГЦ — продукт «творческой» деятельности самой природы, поэтому их считают эталонными.

Без понимания особенностей организации природных БГЦ невозможно проводить оценку сельскохозяйственных экосистем.

Одна из важнейших характеристик биогеоценозов — их структура. Структурность БГЦ выражается в естественном функционально-морфологическом делении системы на части, блоки (подсистемы), тесно связанные между собой. Подсистемы играют роль «кирпичиков», «биогеоценотических элементов», формирующих биогеоценоз как единое целое. К биогеоценотическим блокам относят элементы неживой и живой природы: воздух, воду, материнскую породу, почву, растительность, животный мир.

Блоки (элементы) природных биогеоценозов подчиняются закону упорядоченности заполнения пространства и пространственно-временной определенности. Суть закона в том, что заполнение пространства внутри БГЦ в результате взаимодействия между его подсистемами упорядочено так, что позволяет реализоваться гомеостатическим свойствам экосистемы. Упорядоченность связей между телами (элементами) выражается в разных формах. Н. В. Дылис различает три аспекта организации БГЦ: структурно-физический, характеризующий пространственную группировку и размещение масс живых и неживых тел; функциональный, отражающий их взаимоотношения и деятельность; временной, фиксирующий динамику их сложения и характер работы. Все аспекты органически связаны между собой и проявляются как разные стороны функционирования биогеоценоза как биокосной системы.

В формировании структурности БГЦ важную роль играет растительность. Растения разнообразны по видовому составу, адаптивным возможностям, жизненной стратегии и т. д.

По степени выживания в биогеоценозах, характеру жизненной стратегии растения подразделяют на три основные группы: R-стра- тегов (эксплерентов); К-стратегов (виолентов); S-стратегов (пати- ентов).

Эксплерентов образно называют «бродягами», «шакалами». Экс- плерент не накапливает в организме значительных запасов органического вещества, он почти не обладает конкурентной способностью. Для большинства эксплерентов характерны выраженная пластичность и высокая плодовитость. Они плодоносят даже в угнетенном состоянии. Эксплеренты обычно растут на новых, нарушенных территориях, где мало или нет другой растительности и, следовательно, отсутствует конкуренция.

Растения К-стратеги называют виолентами (образно — «силовиками», «львами»). Они обладают выраженной конкурентной способностью, как правило, имеют мощный габитус и хорошо развитую корневую систему.

Виоленты — это чаще всего виды-эдификаторы. Их реализованная экологическая ниша приближается к фундаментальной экологической нише.

Растения S-стратеги, или патиенты (образно — «верблюды», «терпеливцы»), хорошо переносят неблагоприятные условия среды за счет специальных физиолого-биохимических механизмов переживания стресса. У патиентов экологическая ниша по объему приближается к фундаментальной. У некоторых видов-патиентов хорошо выражена дифференциация ниш.

Кроме типичных эксплерентов, виолентов и патиентов имеются промежуточные формы типов растений.

В процессе эволюции формируются фитоценозы — более или менее устойчивые исторически сложившиеся сообщества растений. Среди них выделяют виды-доминанты, занимающие основное положение в фитоценозе и оказывающие преобладающее влияние на ход биогеоценотических процессов. В лесных БГЦ доминантами служат деревья, в степных — травы. Доминанты обычно выполняют роль эдификаторов — видов растений, определяющих особенности среды не только в фитоценозе, но и в биоценозе в целом. Растения- эдификаторы влияют на физические и иные свойства БГЦ. Так, микроклиматы лесного и степного биогеоценозов, расположенных в одной и той же климатической зоне, в силу присущих им фитоце- нотических особенностей отличаются друг от друга в любое время года и суток.

Вертикальная и горизонтальная структуры фитоценоза во многом зависят от слагающих его видов растений.

В лесных фитоценозах обычно четко выражена вертикальная (ярусная) структура. Ярусность фитоценоза характеризуется расчлененностью всей толщи растительного покрова на горизонты, слои. Так, в лесном фитоценозе различают ярусы древесный, кустарниковый, травяной, тра- вяно-кустарничковый и мохово-лишайниковый. К каждому слою (ярусу) или его части приурочены функционально разные органы растений (наземные — листья, стебли; подземные — корни, клубни и др.). Растения каждого яруса выполняют характерные, свойственные им биогеоценотические функции. В каждом ярусе создаются более или менее своеобразные физико-химические и биотические условия, формируется определенный мир организмов, связанных с растениями. На рисунке 15 показана приуроченность различных видов гетеротрофов к разным органам дуба, что ярко демонстрирует ярусную структуру леса.

Наряду с вертикальным расслоением растительности наблюдается ее горизонтальная неоднородность, мозаичность. Заметны вариации в густоте стояния растений, размещении отдельных видов (рассеянно, группами и т. д.). Горизонтальная мозаичность растительного покрова сказывается на локальных свойствах атмосферы (освещенность, влажность), почвы (влажность, промерзание) и т. д. Части горизонтального расчленения БГЦ, отличающиеся друг от друга по составу, структуре и свойствам компонентов, названы

Н. В. Дылисом парацеллами.

С растениями, формирующими автотрофный блок БГЦ, тесно связаны гетеротрофы — организмы, питающиеся растительной массой. Совокупность взаимосвязанных автотрофов и гетеротрофов образует консорцию — биологическую систему, где центральным членом, ядром или консортом-детерминантом являются растения. Отличительная черта консорции — не только трофически-энергетическая и топическая связь консортов с центральным членом (ядром), но и общность их эволюционного процесса, взаимного приспособления друг к другу в течение длительной коадаптации.

Животный мир биогеоценозов разнообразен. Он состоит из простейших, губок, кишечнополостных, червей, членистоногих, птиц, млекопитающих и т.

д. Животные заселяют наземную часть сухопутных БГЦ, почву, водные экосистемы.

Видовой состав животных разных биогеоценозов (таежных, степных и т. д.) неодинаков. Несмотря на это, животные выполняют более или менее однотипные биогеоценотические функции, способствующие работе БГЦ как целостной системы. Поедая растительную массу, животные превращают ее в органические вещества своих тел (белки, жиры, мочевину и т. д.); выделяют в среду продукты метаболизма (диоксид углерода и др.) и экскременты (фекалии, мочу). В процессе дробления и химической переработки пищевых материалов они ускоряют минерализацию фито- и зоо-

Рис. 15. Потребители дуба (по П. Дювиньо и М. Тангу). Гетеротрофы сгруппированы по органам, которыми они питаются (в скобках указана кратность увеличения).

Листья: 1 — дубовый долгоносик-прыгун (х 3); 2—дубовый трубковерт (х 5); 3 — майский хрущ (х 0,5); 4 — златогузка (х 0,5); 5 — кольчатый шелкопряд (х 0,5); 6 — пяденица-обдирало (х 0,5); ' — зимняя пяденица (х 1,2); 8 — зеленая дубовая листовертка (х0,5). Желуди: 9 — желудевый Долгоносик(х 1,5). Почки: 10— грушевый листовой слоник (х 1,5). Ветви: И — темная мягкотел- Ка (х 1). Кора ствола и ветвей: 12— зеленая узкотелая златка (х2); 13 — дубовый заболонник 1*0,5); 14 — дровосек-рагий (х0,4). Древесина: 15— жук-олень (х0,3); 16 — большой дубовый Усач (х0,5). Корни: 17— корневая орехотворка (х 3); 18— майский хрущ, личинка (х0,2); 19 —

полостый щелкун (х 1)

массы микроорганизмами-редуцентами. Потребляя кислород и выделяя диоксид углерода при дыхании, животные оказывают влияние на химический состав атмосферы. Животные, главным образом насекомые, участвуют в опылении растений. Многие виды животных, преимущественно почвенных, воздействуют на процессы почвообразования при помощи рыхления и перемешивания почвенной массы, удобрения почв экскрементами.

Перемещаясь из одних биогеоценозов в другие, животные участвуют в функционировании межбиогеоценозных «каналов», в осуществлении межэкосистемных связей.

В процессе совместного развития (коэволюции) разные виды растений и животных приспособились друг к другу. Численность видов, вовлеченных в систему адаптивных взаимосвязей, различна, причем характер их взаимовлияний может приобретать самые разнообразные формы. Иногда адаптивные взаимосвязи организмов очевидны, в других случаях сложны и выявляются только с помощью специально проведенных исследований.

Классическим примером коэволюции растений и животных могут служить взаимоотношения между растениями ваточника, бабочками данаидами и голубыми сойками, описанные Дж. Харбор- ном. Автор раскрывает последовательность событий, связывающих эти биологические виды в единую адаптивную систему. 1.

В процессе фотосинтеза в тканях ваточника образуются сердечные гликозиды, играющие роль защиты растений от насекомых. Гликозиды горьки на вкус и токсичны для высших животных. 2.

Ваточник — основной кормовой объект гусеницы данаиды. Гусеница адаптируется к гликозидам. Токсины накапливаются и долго сохраняются в организме насекомого. 3.

Покидая растение-хозяина, взрослая бабочка в своем теле содержит определенный запас защитных для нее токсических ве- ществ-гликозидов. 4.

Голубые сойки делают попытку использовать бабочек в качестве источника пищи, но ядовитые гликозиды вызывают отравление. У соек появляется симптом тяжелого заболевания — рвота. 5.

Голубые сойки приобретают отрицательный пищевой рефлекс: прекращают поедать бабочек. Отрицательная пищевая реакция в форме условного рефлекса увязывается ими с внешним видом ядовитой пищи — яркой окраской бабочки, которая становится предостерегающей.

Указанная схема, вероятно, неполно отражает действительность, но она довольно ярко характеризует основные закономерности адаптивных реакций видов, составляющих биоценоз, в процессе их эволюции.

Жизнедеятельность биоценозов сопровождается синтезом и распадом органического вещества. Они стимулируют биотический круговорот — важнейший фактор длительного (теоретически — вечного) существования жизни на Земле.

В природных БГЦ геохимические циклы почти полностью замкнуты, а процессы притока-оттока веществ почти полностью сбалансированы. Растения, синтезирующие органические вещества из простых неорганических соединений, «зафиксированы» в почве своих местообитаний. Минерализация фитомассы происходит на месте их произрастания. Хотя животные, обладающие двигательной активностью, меньше привязаны к месту своего рождения, большинство аборигенов не покидают экосистему, к которой они хорошо приспособлены и которая наиболее пригодна для их обитания. Поэтому минерализация почти всей зоомассы, как и фотомассы, происходит там, где она образовалась.

Продукты разложения отмерших частей растений и тел животных захороняются в почву. Гумус обогащается питательными веществами, разнообразными макро- и микроэлементами. Плодородие почв хотя и медленно, но возрастает. Из года в год, из века в век биологическая продуктивность БГЦ увеличивается.

Относительная замкнутость биотического круговорота, сбалансированность процессов синтеза и распада органических веществ в БГЦ — одна из характерных черт природных комплексов, находящихся в стабильном (климаксном) состоянии. Однако «фоновая» биогеохимическая обстановка в биогеоценозах разных географических зон неодинакова. Это объясняется различиями экологических условий, сложившихся в тундре, тайге, степях, пустынях и тропиках.

Так, в тундровых БГЦ мало солнечного света и тепла, особенно в зоне вечной мерзлоты. Здесь произрастают многолетние растения с коротким периодом вегетации, доминируют мхи и лишайники. Из-за сильных морозов и метелей выживают лишь низкорослые древесные растения: карликовая береза, ива. Беден видовой состав не только флоры, но и фауны. В тундре обитают лемминги, северные олени, горностаи, песцы, а из птиц — белые куропатки и полярные совы. Синтез и распад органического вещества в тундре замедленны, скорость геохимических циклов снижена, химические реакции в почвах заторможены. Геохимия кислых тундровых ландшафтов характеризуется увеличением в почвах водородных ионов, уменьшением подвижных форм кальция, азота, меди, других макро- и микроэлементов. Поскольку почвы бедны растворами химических соединений, воды в тундре обычно слабо минерализованы. Они пресные или даже ультрапресные, как дистиллированные.

Таежные (лесные) БГЦ расположены южнее тундровых. В тайге по сравнению с тундрой лето продолжительнее, зима короче. Климатические условия благоприятны для роста деревьев. Огромную территорию тайги покрывают хвойные леса, переходящие на юге в смешанные и широколиственные. В таежных БГЦ фауна разнообразнее. Так, в тундре обитает один вид семейства оленьих, в тайге — около десяти. Синтез и распад органического вещества в тай- ге происходят активнеє, чем в тундре. Однако и здесь скорость биотического круговорота невелика, так как химические элементы в телах долгоживущих деревьев задерживаются надолго. Геохимия таежных БГЦ характеризуется высокой концентрацией водородных ионов в почвах. Почвы здесь кислые, и только в местах залегания известняков они приобретают нейтральную или щелочную реакцию. В большинстве биогеоценозов в почвах отмечается дефицит содержания подвижных форм кальция, калия, фосфора, кобальта, йода, других макро- и микроэлементов. Минерализация воды в разных БГЦ неодинакова. В водах таежного севера минеральных веществ обычно меньше, чем в водах южных лесов.

Степные БГЦ сформировались в условиях теплого сухого климата, благоприятного для роста травянистой растительности. Видовой состав животных зде'сь разнообразнее, чем в тайге. Среди млекопитающих преобладают грызуны и копытные. Биотический круговорот в степных БГЦ ускорен. Темпы синтеза органического вещества высоки, так как степные травы растут быстро. Большая часть фитомассы ежегодно отмирает, формируются мощные черноземы, богатые гумусом. Хотя в степях, как и в тайге, разложение органических веществ сопровождается образованием гумусовых и иных кислот, в степных БГЦ почвы некислые. Кислоты нейтрализуются кальцием и другими щелочными элементами, образующимися при минерализации фитомассы. Ресурсы подвижных макро- и микроэлементов в почвах степных БГЦ обычно велики, и это создает благоприятные условия для минерального питания новых поколений быстрорастущих травянистых растений. Биогеохимия почв влияет на реакцию воды, которая обычно нейтральная или щелочная. Концентрация минеральных солей в ней обычно высокая (жесткая вода).

Пустынные БГЦ расположены, как правило, в глубине континентов с жарким сухим климатом. В них осадков выпадает мало, испарение усилено. Растительность бедная, разреженная. Видовой состав животных невелик. Из копытных встречаются антилопы и верблюды, хорошо приспособленные к жизни в пустыне. Масштабы синтеза и распада органических веществ ничтожны. Влияние живого вещества на водную миграцию химических элементов крайне слабое. Питательных веществ в почве мало. Там, где грунтовые воды находятся на небольшой глубине, они засоляют почву и образуются солончаки. Реакция воды чаще всего щелочная. В такой воде много солей, она жесткая.

Биогеоценозы тропических лесов сформировались в теплом влажном климате. Видовой состав растений и животных здесь необычайно богат. Процессы синтеза и распада органических веществ протекают интенсивно, биотический круговорот ускорен. При бурном разложении органических веществ образуется много кислот. Под влиянием воды, обогащенной кислотами, происходят разрушение почв и вынос подвижных химических элементов в океан. И все же полного перемещения всех химических элементов из БГЦ не происходит, так как часть их захватывается организмами и вновь вовлекается в геохимический цикл.

Своеобразие биотического круговорота и геохимической обстановки, обусловленное шарообразностью Земли, повлияло на распределение видов растений и животных в местообитаниях тундровых, таежных, степных, пустынных биогеоценозов и т. д.

Замкнутость биотических круговоротов природных биогеоценозов относительна. В процессе эволюции биосферы круговороты изменяются, происходит поступательное развитие и преобразование БГЦ. Например, болотная экосистема с травами, растущими в прибрежной полосе, может трансформироваться в травяной биогеоценоз. Причина этого в том, что после каждого годичного геохимического цикла определенное количество органических веществ, не подвергшихся полной минерализации, захороняется и остается на дне болота в форме ила. Дно поднимается, болото мелеет. Оно все более и более зарастает травами и в конце концов превращается в травяной биогеоценоз.

Энергия Солнца — движущая сила биотического круговорота и разнообразных проявлений жизни на всех уровнях ее организации: биосферном, биоценотическом, популяционном, организменном, клеточном и молекулярном. Солнечные лучи улавливаются орга- низмами-продуцентами и трансформируются ими в химическую энергию углеводов, белков и жиров своих тел. Затем эта энергия с фитомассой передается консументам и редуцентам.

Переход энергии по пищевой (трофической) цепи подчиняется правилу десяти процентов. Согласно ему организмы каждого трофического уровня усваивают в среднем лишь 10 % (от 7 до 17 %) энергии. Остальная часть энергии превращается в тепло, рассеивается и теряется.

Потеря энергии при ее переносе с одного трофического уровня на другой определяет структуру экологической пирамиды, отражающей соотношение биомасс между продуцентами, консументами и редуцентами. В наземных биогеоценозах живая масса продуцентов больше, чем консументов, биомасса консументов первого порядка больше, чем консументов второго порядка, и т. д. В обратный поток (от редуцентов к продуцентам) поступает лишь ничтожное количество изначально вовлеченной энергии (не более 0,25 %). Поэтому о круговороте энергии говорить нельзя. Поток энергии движется в одном направлении. Он подчиняется закону однонаправленности потока энергии. Поток солнечной энергии определяет организованность биогеоценозов, их сбалансированность, оптимальность взаимоотношений между живой и неживой природой, флорой и фауной.

В БГЦ, развившихся в процессе эволюции биосферы, сформировались оптимальные пищевые цепи, сложилось энергетическое равновесие. Трофически и энергетически взаимосвязанные виды организмов — растения, производящие органическое вещество, растительноядные животные, потребляющие фитомассу и преобразующие ее в органическое вещество своих тел, хищники, поедающие травоядных, и т. д. — приспособились друг к другу и к условиям своего существования. Ни один вид гетеротрофных организмов не способен расщеплять органическое вещество растений до конечных продуктов распада (диоксида углерода, воды и минеральных солей). Каждый вид потребляет лишь часть содержащейся в органическом веществе энергии, отдавая в среду то, что могут использовать другие. Переход веществ и энергии с одного трофического уровня на другой не причиняет вреда ни одной из взаимодействующих популяций.

Пищевые цепи имеют важное биогеоценотическое значение. Они играют большую роль в функционировании биогеоценоза, его самоуправлении и саморегуляции. БГЦ как биокосная система состоит из двух взаимосвязанных подсистем: управляемой и управляющей. Управляемой системой являются растения, производящие органическую массу, т. е. продуценты. Управляющая система БГЦ состоит из консументов и редуцентов, т. е. из комплекса взаимосвязанных организмов, потребляющих органическое вещество растений и переводящих его в другие формы. Рост растений регулируют растительноядные животные — они поедают излишнюю биомассу. Растительноядных, в свою очередь, «контролируют» хищники и паразиты. Они препятствуют безмерному размножению растительноядных и излишнему выеданию растительности. Над паразитами есть «управляющие» сверхпаразиты и т. д.

По правилу Эшби, управляющая система не может быть проще, чем управляемая; она всегда сложнее. Механизмы саморегуляции биогеоценозов сложны и необычайно тонки. В зависимости от состояния природного комплекса они могут приобретать разнообразные, нередко парадоксальные формы. В определенных условиях управляющая система становится управляемой. Так, например, снижение биологической продуктивности растений в экстремальных условиях (засуха, наводнение и т. д.) по типу обратной связи неизбежно приведет к уменьшению численности растительноядных, хищников, т. е. трансформации управляющей системы в управляемую.

Развитие сообщества растений и животных, населяющих БГЦ, во многом определяется и управляется информационными процессами. Информация проявляется на всех уровнях организации жизни — от молекулярного до биосферного. У. Джексон отмечал, что то, что мы видим, идя по прерии, — это не что иное, как миллиарды биологических «бит» взаимодействующей информации — молекул ДНК и РНК в растительных видах. Генетическая программа определяет развитие особей. Информационная система играет решающую роль во взаимоотношениях между отдельными особями, популяциями, разными видами в фитоценозах и зооценозах, растениями и животными, составляющими биоценоз, между биотой и окружающей ее средой. Суммарный фонд информации природных комплексов необычайно велик. Он играет огромную роль в процессах, связанных с регуляцией и управлением биогеоценозов, их устойчивостью и надежностью.

В процессе длительной эволюции природные биогеоценозы приобрели особые свойства, называемые экологической устойчивостью и надежностью. Экологическая устойчивость выражается в способности природной системы сохранять свои структуру и функции в условиях внешних воздействий. Экологическая надежность — понятие более общее, чем устойчивость. Механизмы экологической надежности носят более широкий и фундаментальный характер.

В качестве универсального принципа обеспечения надежности биогеоценозов, как и других биокосных и биологических систем, выступает гетерогенность их структуры. Гетерогенность проявляется на всех уровнях организации биогеоценоза. При рассмотрении биогеоценоза как целого особенно четко проявляется его парацел- лярная гетерогенность. Каждый БГЦ связан с более или менее однородным участком земной поверхности, однако его однородность не носит абсолютного характера (Дылис).

В пространстве и во времени биогеоценозу присуща изменчивость как процессов, в нем происходящих, так и его структурной организации. Признаки изменчивости наблюдают в фитоценозе, зооценозе, в биокосных и неживых телах, во взаимосвязях между ними, в функционировании БГЦ как системы.

Гетерогенность состава биосистем как принцип обеспечения их надежности особенно ярко проявляется на популяционном уровне (Злобин). Для любой популяции дикорастущего растения характерна высокая гетерогенность по набору экотипов, имеющих генетическую обусловленность, по возрастности, виталитету, многим морфологическим и биохимическим признакам особей. Дикорастущие растения заметно отличаются друг от друга по размеру, высоте, количеству цветков, срокам цветения и плодоношения. Гетерогенность популяции увеличивает ее адаптационные возможности и экологическую надежность. От надежности молекулярных, клеточных и тканевых систем многоклеточных организмов зависит их свойство сохранять высокую жизнеспособность и естественную резистентность.

Натурбиогеоценозы могут практически бесконечно функционировать в пределах неизбежных экзогенных и эндогенных флуктуаций. В них сформировались механизмы самосохранения и самовосстановления. В пределах естественных для системы суточных, сезонных, межгодовых и вековых колебаний в ней поддерживается подвижное экологическое равновесие, и биогеоценоз, постоянно обновляясь, сохраняет свою структуру и функцию; он может «работать» бесконечно долго.

Однако экологическая устойчивость и надежность БГЦ небеспредельны. Под воздействием тех или иных факторов, чаще всего экстремальных, механизмы регуляции БГЦ могут быть подавлены, нарушены. В этих случаях биогеоценоз может измениться, трансформироваться. Так, например, лес на севере сменяется тундрой, а на юге — степью или даже пустыней. Роль природных факторов в изменении биогеоценозов велика. Но она несравнима с теми грандиозными изменениями в природе, которые происходят под влиянием разнообразной деятельности людей. 3.3.

<< | >>
Источник: Н. А. Уразаев, А. А. Вакулин, А. В. Никитин и др.. Сельскохозяйственная экология— М.: Колос. — 304 с.; ил. — (Учебники и учеб. пособия для студентов высших учебных заведений).. 2000

Еще по теме ПРИРОДНЫЕ БИОГЕОЦЕНОЗЫ:

  1. 4.1 ОСНОВНЫЕ ПОНЯТИЯ, ВСТРЕЧАЮЩИЕСЯ ПРИ ОЦЕНКЕ КАЧЕСТВА ПРИРОДНОЙ СРЕДЫ
  2. 3.1. БИОГЕОЦЕНОЗЫ КАК ЭЛЕМЕНТАРНЫЕ СТРУКТУРНЫЕ ЕДИНИЦЫ БИОСФЕРЫ
  3. ПРИРОДНЫЕ БИОГЕОЦЕНОЗЫ
  4. СЕЛЬСКОХОЗЯЙСТВЕННЫЕ ЭКОСИСТЕМЫ
  5. ПАСТБИЩНЫЙ БИОГЕОЦЕНОЗ
  6. СТРУКТУРА ПАСТБИЩНЫХ БИОГЕОЦЕНОЗОВ 3.5.1.1. ЭКОТОП
  7. СТАДО СЕЛЬСКОХОЗЯЙСТВЕННЫХ ЖИВОТНЫХ И ЕГО ВЛИЯНИЕ НА ПАСТБИЩНЫЙ БИОГЕОЦЕНОЗ
  8. ЭКОЛОГИЧЕСКАЯ РЕГУЛЯЦИЯ И ОПТИМИЗАЦИЯ ПАСТБИЩНЫХ БИОГЕОЦЕНОЗОВ
  9. ФЕРМЕННЫЙ БИОГЕОЦЕНОЗ
  10. ИЗМЕНЕНИЕ АГРАРНЫХ ЛАНДШАФТОВ ПОД ВЛИЯНИЕМ ФЕРМЕННЫХ БИОГЕОЦЕНОЗОВ
  11. ИЗМЕНЕНИЕ АГРАРНЫХ ЛАНДШАФТОВ ПОД ВЛИЯНИЕМ ЛУГОПАСТБИЩНЫХ БИОГЕОЦЕНОЗОВ
  12. ИЗМЕНЕНИЕ АГРАРНЫХ ЛАНДШАФТОВ ПОД ВЛИЯНИЕМ ЛЕСНЫХ БИОГЕОЦЕНОЗОВ
  13. Организация природного заповедника — опыт обоснования экологической инвестиции на базе условно-опросного метода (ролевая игра)
  14. БИОГЕОХИМИЧЕСКИЕ ЦИКЛЫ ЭЛЕМЕНТОВ В ПРИРОДНЫХ ЗОНАХ ЕВРОПЕЙСКОЙ ЧАСТИ СССР Т.И.Евдокимова, Т.Л. Быстрицкая, В.Д. Васильевская, Л.А. Гришина, Е.М. Самойлова
  15. Заказники и другие особо охраняемые природные территории
  16. Биоценоз и биогеоценоз
  17. Природные экологические системы