<<
>>

Бозоны и фермионы

Квантовая механика указывает на важное различие между частицами, разделяя весь мир частиц на бозоны и фермионы. Эти частицы могут относиться к фундаментальным, например, электроны и кварки, или к составным, таким как протон или атомное ядро.

Любой объект является либо бозоном, либо фермионом.

Является ли такой объект бозоном или фермионом, зависит от свойства, называемого внутренним спином частицы. Название наводит на определенные образы[75], однако спин частиц не соответствует никакому реальному движению в пространстве. Однако если частица имеет внутренний спин, она взаимодействует с другими так, как будто на самом деле вращается, несмотря на то что на самом деле никакого вращения нет.

Например, взаимодействие электрона с магнитным полем зависит от классического вращения электрона, его реального вращения в пространстве. Однако взаимодействие электрона с магнитным полем зависит также от внутреннего спина электрона. В противоположность классическому моменту импульса, возникающему из-за реального движения в физическом пространстве[76], внутренний спин является свойством частицы. Он фиксирован и обладает определенным значением сейчас и всегда. Например, фотон есть бозон со спином 1 (в единицах h). Это свойство фотона, оно столь же фундаментально, как тот факт, что фотон движется со скоростью света.

В квантовой механике спин квантован. Квантовый спин может принимать значения 0 (т. е. полное отсутствие спина), 1, 2 или любое целое число единиц спина. Объекты, называемые бозонами по имени индийского физика Сатиендры Ната Бозе, имеют внутренний спин, т. е. квантово-механический спин, не зависящий от вращения, принимающий целые значения: бозоны могут иметь внутренний спин, равный 0, 1, 2 и т. д.

Спин фермионов квантован в единицах, о которых до развития квантовой механики никто и не мог подумать, что они возможны. Фермионы, названные по имени итальянского физика Энрико Ферми, имеют полуцелые значения внутреннего спина, например, У) или 3/г- В то время как объект со спином 1 возвращается к своей начальной конфигурации после однократного поворота вокруг своей оси, частицы спина x/i делает это только‘после двукратного поворота.

Несмотря на кажущуюся фантастичность полуцелых значений спина, протоны, нейтроны и электроны все являются фермионами спина Уг.

Фермионная структура самых фундаментальных частиц определяет многие свойства окружающего нас вещества. В частности, принцип Паули утверждает, что два фермиона одного типа никогда не могут находиться в одном и том же месте. Именно благодаря принципу исключения атом приобретает структуру, на которой основана вся химия. Так как электроны одинакового спина не могут находиться в одном и том же месте, они обязаны находиться на разных орбитах.

Именно поэтому я смогла выше провести аналогию с разными этажами высокого здания. Различные этажи представляют разные возможные квантованные орбиты, которые согласно принципу Паули заняты находящимися вокруг ядра электронами. Принцип исключения является также причиной того, что вы не можете просунуть руку сквозь крышку стола или упасть в центр Земли. Стол и ваша рука представляют жесткую структуру только потому, что соотношение неопределенностей порождает атомную, молекулярную и кристаллическую структуру вещества. Электроны в вашей руке тождественны электронам в столе, так что когда вы бьете рукой по столу, электронам не находится внутри стола места. Никакие два тождественных фермиона не могут находиться в одном и том же месте в одно и то же время, так что вещество не может просто разрушиться.

Бозоны действуют в точности противоположным образом. Они могут находиться и находятся в одном и том же месте. Бозоны напоминают крокодилов, которые предпочитают скапливаться друг на друге. Если вы включите свет в помещении, где свет уже есть, то его поведение будет существенно отличаться от ударов каратиста рукой по столу. Свет, состоящий из являющихся бозонами фотонов, беспрепятственно проходит сквозь другой свет. Два световых пучка могут светить точно в одном месте. В действительности, на этом основаны лазеры: занимающие одно и то же состояние бозоны позволяют лазерам создавать сильные когерентные пучки. Сверхтекучие жидкости и сверхпроводники также состоят из бозонов.

Экстремальным примером свойств бозонов является бозе-эйнштейновский конденсат, в котором много тождественных частиц коллективно ведут себя как одна частица. Такое поведение совершенно невозможно у фермионов, которые должны находиться в разных местах. Бозе-эйнштейновские конденсаты возможны только потому, что бозоны, из которых они состоят, в противоположность фермионам могут иметь совершенно одинаковые свойства. В 2001 году Эрик Корнелл, Вольфганг Кеттерле и Карл Биман получили Нобелевскую премию по физике за открытие бозе-эйнштейновского конденсата.

В дальнейшем мне не потребуются все эти подробности поведения бозонов и фермионов. Единственные факты, которые я буду использовать из этого раздела, таковы: фундаментальные частицы имеют внутренний спин и могут действовать так, как будто они вращаются вокруг своей оси в том или другом направлении, и все частицы являются либо бозонами, либо фермионами.

Что стоит запомнить Квантовая механика утверждает, что и вещество, и свет состоят из дискретных единиц — квантов. Например, кажущийся непрерывным свет на самом деле состоит из отдельных квантов, называемых фотонами. Кванты являются основой физики частиц. Стандартная модель физики частиц, объясняющая известные свойства материи и сил, утверждает, что вся материя и все силы могут быть в конечном итоге сведены к частицам и их взаимодействиям. Кроме того, согласно квантовой механике каждой частице сопоставляется волна, называемая волновой функцией частицы. Квадрат этой волны равен вероятности того, что частица будет обнаружена в определенном месте. Для удобства я буду иногда говорить о волне вероятности, равной квадрату более часто употребляемой волновой функции. Значения этой волны вероятности будут непосредственно определять сами вероятности. Такая волна появится позднее, когда мы будем обсуждать гравитон — частицу, которая передает силу тяготения. Волна вероятности важна и при обсуждении мод Калуцы—Клейна (КК), представляющих собой частицы, импульс которых направлен вдоль дополнительных измерений, т.

е. перпендикулярно к обычным измерениям. Другое важное отличие квантовой механики от классической физики состоит в том, что квантовая механика утверждает, что вы не можете точно определить путь частицы — никогда нельзя знать точную траекторию частицы, соединяющую начальную и конечную точки. Отсюда следует, что мы должны рассматривать все пути, по которым может двигаться частица под действием силы. Так как квантовые пути могут включать любые взаимодействующие частицы, квантово-механические эффекты могут оказывать влияние на массы и константы взаимодействия. Квантовая механика делит частицы на бозоны и фермионы. Существование двух разных категорий частиц критически важно для структуры Стандартной модели, а также для предполагаемого расширения Стандартной модели, известного как суперсимметрия. Соотношение неопределенностей в квантовой механике в сочетании с соотношениями специальной теории относительности утверждает, что с помощью физических констант можно связать массу, энергию и импульс частицы с минимальным размером области, в которой частица данной энергии может испытывать силы или взаимодействия. Два из самых часто используемых приложений этих соотношений включают две энергии, известные как характерная энергия слабых взаимодействий и платовская энергия. Энергия слабых взаимодействий равна 250 ГэВ, а планковская энергия намного больше и составляет 1019 ГэВ. Только силы, радиус которых меньше 10"19 м, будут вызывать измеримые эффекты при воздействии на частицу с характерной энергией слабых взаимодействий. Это расстояние очень мало, но оно имеет отношение к физическим процессам в ядре и к механизму, с помощью которого частица приобретает массу. Несмотря на свою малость, радиус слабых взаимодействий намного больше платовской длины, равной 10~35 м. Это размер области, в которой силы оказывают влияние на частицы, обладающие планковской энергией. Такая энергия определяет интенсивность гравитационного взаимодействия. Это энергия, которую должны иметь частицы, чтобы гравитационное притяжение между ними стало сильным.

<< | >>
Источник: Рэндалл Лиза. Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. 2011

Еще по теме Бозоны и фермионы:

  1. Глава 13 Пятимерный человек
  2. Глава 14 Политический журналист
  3. § 2. Философские проблемы физической картины мира
  4. Два важных значения энергиии что о них говорит соотношение неопределенностей
  5. Бозоны и фермионы
  6. Слабое взаимодействие и нейтрино
  7. Известные фундаментальные частицы
  8. Глава 13 Суперсимметрия: скачок за пределыСтандартной модели
  9. Фермионы и бозоны: невероятная пара
  10. Суперистория
  11. Суперсимметричное расширениеСтандартной модели
  12. Суперсимметрия и проблема иерархии
  13. Суперсимметрия: оценка доказательств
  14. И стоки теории струн
  15. Гравитация: опять иная
  16. Закрученная геометрияи объединение взаимодействий
  17. Глоссарии