<<
>>

Экспериментальные ограничения

До недавнего времени большинство теоретиков-струнников предполагало, что дополнительные измерения имеют размеры не больше крохотного планковского масштаба длины. Так было потому, что гравитация становится сильной на план- ковском масштабе энергий, а теория квантовой гравитации, которой могла бы быть теория струн, должна вступать в игру в этом месте.

Е[о планковский масштаб длины много меньше любой длины, которую мы можем изучать экспериментально. Крохотный планковский масштаб длины соответствует (согласно квантовой механике и специальной теории относительности) колоссальному планковскому масштабу масс (или энергий), в десять тысяч триллионов раз больше того, что могут достичь современные ускорители частиц. Частицы КК планковской массы были бы настолько тяжелыми, что оказались бы далеко за пределами любого доступного эксперимента.

Однако возможно, что размер дополнительных измерений больше, а частицы КК легче. Поэтому почему бы не спросить, что экспериментальные тесты говорят нам о размерах дополнительных измерений? Что мы на самом деле знаем, если отбросить прицычные теоретические представления?

Если мир имеет дополнительные измерения, и в нем нет бран, тогда все знакомые частицы, например электрон, будут иметь своих КК-партнеров^2!. Это будут частицы, имеющие в точности тот же заряд, что и знакомые нам частицы, но обладающие импульсом в дополнительных измерениях. КК-парт- неры электрона будут отрицательно заряжены, как электрон, но тяжелее. Если дополнительное измерение свернуто в окружность, масса легчайшей из таких частиц будет отличаться от массы электрона на величину, обратно пропорциональную размеру дополнительного измерения. Это означает, что чем больше дополнительное измерение, тем меньше масса частицы. Так как большие измерения порождают более легкие частицы КК, ни одну из которых не наблюдали экспериментально, ограничения на массы частиц КК приводят к ограничениям на разрешенный размер дополнительного свернутого измерения.

До сих пор не было никаких признаков рождения таких заряженных частиц на коллайдерах, работающих при энергиях вплоть до 1000 ГэВ. Так как частицы КК были бы характерным признаком дополнительных измерений, тот факт, что мы их не видим, говорит нам, что дополнительные измерения не могут быть слишком большими. Современные экспериментальные ограничения утверждают, что дополнительные измерения не могут быть больше[147], чем 10“17 см. Это очень мало, намного меньше, чем все, что мы способны видеть непосредственно.

Этот предел на размер дополнительного измерения примерно в десять раз меньше, чем масштаб длины слабых взаимодействий. Однако, даже несмотря на то, что 10~17 см — это мало, все равно это огромное число по сравнению с план- ковским масштабом длины 10~33 см, что на шестнадцать порядков меньше. Это означает, что дополнительные размерности могут быть намного больше, чем планковский масштаб длины, и при этом ускользать от обнаружения. Греческий (современный) физик Игнаций Антониадис был одним из первых, кто представил, что дополнительные измерения имеют не планковский размер, а вместо этого сравнимы по размеру с масштабом длины, связанным со слабым взаимодействием. Он размышлял о том, какая новая физика может возникнуть, когда коллайдеры хоть немного увеличат свою энергию. В конце концов, проблема иерархии говорит нам, что мы должны что-то увидеть при тех энергиях, при которых будут рождаться частицы с энергиями и массами порядка масштаба слабых взаимодействий.

Но даже приведенный выше предел на размер дополнительных измерений не обязательно всегда применим. Частицы КК являются следами дополнительных измерений, но они могут быть хитрыми и удивительно трудными для поиска. Недавно мы узнали чуть больше о частицах КК и о том, как они могут выглядеть. В следующих главах мы объясним новейшие идеи о том, почему, добавив в игру браны, дополнительные измерения могут стать больше 10"17 см и все же ускользать от обнаружения, вопреки ожиданиями, что большие измерения порождают более легкие частицы КК.

Некоторые модели с поразительно большими измерениями — так что вы вправе думать, что они приведут к хорошо видимым следствиям — могут быть невидимыми, помогая, тем не менее, объяснить непонятные свойства частиц Стандартной модели. В гл. 22 мы опишем еще более удивительный результат: бесконечно большое дополнительное измерение может порождать бесконечно много легких частиц КК, не оставляя при этом никаких наблюдаемых следов.

Что нового Моды Калуцы—Клейна (КК) — это частицы, имеющие экстра-импульс в дополнительных измерениях; они являются многомерными лазутчиками в нашем четырехмерном мире. Частицы КК выглядят как тяжелые частицы с теми же зарядами, что и у известных частиц. Массы и взаимодействия частиц КК определяются теорией с дополнительными измерениями; поэтому они отражают свойства пространства-времени с дополнительными измерениями. Если бы мы могли найти и измерить свойства всех частиц КК, мы бы знали размеры и форму дополнительных измерений. Современные экспериментальные ограничения говорят нам, что если все частицы перемещаются по пространству с дополнительными измерениями, размер этих измерений не может превышать 10~17 см.

<< | >>
Источник: Рэндалл Лиза. Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. 2011

Еще по теме Экспериментальные ограничения:

  1. Становление экспериментально- математической науки
  2. 3. Гносеология И.ГЛамберта как философское осмысление методологии экспериментальной науки
  3. Глава 9. Сравнительный анализ уровней показателей развития медиакомпетентности студентов в контрольной и экспериментальной группах*
  4. Глава 3. Экспериментальные показатели динамичности[26] нервных процессов
  5. На экспериментальной площадке сознания А. К. Осницкий (Москва)
  6. СОТРУДНИЧЕСТВО ОБЕЗЬЯН В ЭКСПЕРИМЕНТАЛЬНЫХ УСЛОВИЯХ
  7. 2.2. Принципы патопсихологического экспериментального исследования
  8. О. Л. Романова ПСИХОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ МАТЕРИНСКОЙ ПОЗИЦИИ ЖЕНЩИН, ДЕТИ КОТОРЫХ СТРАДАЮТ ЦЕРЕБРАЛЬНЫМ ПАРАЛИЧОМ
  9. Глава 16 ЭКОЛОГИЧЕСКОЕ ПОВЕДЕНИЕ
  10. Выборочные насильственные ограничения.
  11. Глава 8 Экспериментальная интерлюдия:проверка Стандартной модели
  12. Нарушенная суперсимметрия
  13. Уедыненые и суперсимметрия
  14. Экспериментальные ограничения
  15. 11.3 Оптимизация свойств многокомпонентных материалов