<<
>>

Еще более причудливая возможность

  Я уже описывала несколько странных свойств дополнительных измерений. Но самая странная возможность еще впереди. Вскоре мы увидим, что закрученное дополнительное измерение может на самом деле простираться бесконечно далеко, оставаясь при этом ненаблюдаемым, в противоположность плоскому измерению, которое всегда должно иметь конечный размер, чтобы согласовываться с наблюдениями.

Этот результат поистине шокирует. В гл. 22, где мы обсудим это бесконечное дополнительное измерение, мы сосредоточимся на геометрии пространства, а не на проблеме иерархии. Но я кратко остановлюсь здесь на том, как можно решить проблему иерархии в случае пространства с бесконечным дополнительным измерением.

До сих пор мы рассматривали модель с двумя бранами: Гравитационной браной и Слабой браной, причем обе они ограничивали пятое измерение. Однако Слабая брана не обязана быть концом мира (т. е. границей пятого измерения). Если хиггсовская частица закреплена на второй бране, расположенной в середине бесконечного дополнительного измерения, то такая модель также может решить проблему иерархии. Функция вероятности гравитона была бы очень малой на Слабой бране, гравитация была бы слабой, и проблема иерархии решалась бы как и раньше, когда Слабая брана ограничивала пятое измерение. Функция вероятности гравитона в модели с бесконечным закрученным измерением продолжалась бы за пределы Слабой браны, но это не повлияло бы на решение проблемы иерархии, которое основано только на малости функции вероятности гравитона на Слабой бране.

Однако, поскольку измерение бесконечно, частицы КК имели бы другие массы и взаимодействия, так что экспериментальные следствия этой модели отличались бы от тех, которые я только что описала. Когда мы с Джо Ликкеном впервые обсуждали эту возможность в Аспеновском физическом центре (вдохновляющее место, а также одна из причин, по которым многие физики-теоретики любят гулять пешком), мы не были уверены, будет ли эта идея на самом деле работать. Если бы пятое измерение не кончалось на Слабой бране, не все частицы КК были бы тяжелыми (и имели бы массу порядка ТэВ).

Массы некоторых частиц КК были бы крохотными. Если бы эти частицы были обнаружимы, но экспериментаторы до сих пор их не открыли, модель должна была бы быть исключена.

Но оказалось, что модель выжила. Сидя на скамейке, окруженная роскошным горным пейзажем, я решала задачу о взаимодействиях частиц КК (Джо занимался такими же вычислениями, но, я полагаю, он находился в своем кабинете в Центре). Мы получили результат, из которого следовало, что хотя взаимодействия частиц КК были достаточно велики, чтобы представлять интерес для будущих экспериментов, они были недостаточно велики для того, чтобы их уже можно было наблюдать.

В будущем БАК дает хороший шанс рождать частицы КК этой модели, если они существуют. Такие частицы будут выглядеть не так, как частицы из моделей с конечными закрученными дополнительными измерениями. Вместо милых частиц КК, распадающихся внутри детектора, частицы КК в модели с бесконечным дополнительным измерением сбегут в дополнительное измерение (похоже на поведение частиц КК, когда имеются большие измерения). Поэтому, если существует бесконечное закрученное дополнительное измерение и Слабая брана, решающая проблему иерархии, экспериментаторы могут только надеяться обнаружить события с недостающей энергией. Даже в этом случае при достаточно больших энергиях недостающая энергия должна быть достаточно ясным сигналом того, что где-то здесь есть нечто новое.

<< | >>
Источник: Рэндалл Лиза. Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. 2011

Еще по теме Еще более причудливая возможность:

  1. ПРЕОБРАЗОВАНИЕ ЗЕМЕЛЬНОЙ СОБСТВЕННОСТИ
  2. Теория литературной эволюции
  3. Оценка и демаркация
  4. ПРОБЛЕМА БЫТИЯ
  5. Глава 3                                                                                                               jjg Краткое описание психологической типологии К.Юнга
  6. § 1. Формирование представлений об особенностях характера подростков
  7. 3. Рыцари плаща и кинжала
  8. 4.24. Использование техник запоминания
  9. ДЕЦЕНТРАЛИЗОВАННЫЕ КОРПОРАЦИИ
  10. Глава 7е К.              Рёбак ТОРГОВЛЯ
  11. Глава 23 ГУМАНИТАРНАЯ ГЕОГРАФИЯ И ОБРАЗОВАНИЕ
  12. Глава 15 Математическая кутерьма
  13. ГЛАВА 6 Новгород
  14. Перевод в XX в.