Фермионы и бозоны: невероятная пара
В суперсимметричном мире каждой известной частице соответствует другая частица — суперсимметричный партнер или, как говорят, суперпартнер, в которого она превращается в результате преобразования суперсимметрии.
Преобразование суперсимметрии превращает фермион в его партнера — бозон, а бозон — в партнера-фермион. В гл. 6 мы видели, что фермионы и бозоны — это разные типы частиц квантово-механических теорий, отличающиеся значением спина. Спин фермионнных частиц полуцелый, а бозонных — целый. Целые значения спина — это те числа, которыми можно характеризовать обычные тела, вращающиеся в пространстве, в то время как полуцелые значения являются специфическим понятием квантовой механики.В суперсимметричной теории все фермионы могут превращаться в соответствующие бозоны, а все бозоны — в соответствующие фермионы. Суперсимметрия — это прием теоретического описания таких частиц. И если вы анализируете уравнения, описывающие поведение частиц в результате преобразования суперсимметрии, переставляющего бозоны и фермионы, то эти уравнения после преобразования должны выглядеть аналогично. Все предсказания должны быть тождественны тем, которые можно было сделать до преобразования симметрии.
На первый взгляд, рассматриевая нами симметрия игнорирует логику. Предполагается, что преобразования симметрии оставляют систему неизменной, однако преобразования суперсимметрии меняют местами частицы, которые существенно различны — фермионы и бозоны.
И хотя было странно предположить, что за преобразованием, смешивающим столь разные объекты, может скрываться симметрия, тем не менее ряд физиков рассмотрели такую возможность. В 1970-е годы европейские и советские физики[128] показали, что симметрия может переставлять местами столь различные частицы и законы физики могут при этом оставаться неизменными.
Эта симметрия несколько отличается от предыдущих, так как подвергающиеся перестановкам объекты явно обладают разными свойствами.
Тем не менее симметрия может существовать, если бозоны и фермионы присутствуют в равных количествах. В качестве аналогии рассмотрим два набора красных и зеленых шариков разных размеров, причем наборы отличаются только цветом. Допустим, вы сели играть в шарики с приятелем. Вы играете красными шариками, а ваш приятель — зелеными. Если у каждого красного шарика имеется единственная пара среди зеленых шариков, то не важно, каким цветом вы играете — вы не получите никаких преимуществ в игре. Однако, если количества красных и зеленых шариков каждого размера не равны друг другу, игроки будут поставлены в неравные условия. Начальный выбор красного или зеленого цвета будет иметь значение и игра будет происходить по-другому, если вы со своим приятелем поменяетесь цветами. Чтобы была симметрия, шарики каждого размера должны быть двух цветов — красного и зеленого, и должно быть одинаковое число шариков каждого цвета и каждого размера.Аналогично, суперсимметрия возможна только при условии, что бозоны и фермионы точно объединяются в пары. Вам необходимо иметь равное число бозонных и фермионных типов частиц. И точно так же, как шарики, меняющиеся местами, должны иметь одинаковые размеры, спаренные бозоны и фермионы должны иметь одинаковые массу и заряды, а их взаимодействия должны контролироваться одинаковыми параметрами. Иными словами, каждая частица должна иметь своего суперпартнера с аналогичными свойствами. Если бозон испытывает сильные взаимодействия, эти же взаимодействия испытывает его суперсимметричный партнер. Если имеются взаимодействия, включающие определенные частицы, то должны быть и связанные с ними взаимодействия, включающие их суперсимметричных партнеров.
Одна из причин, которая делает суперсимметрию столь интригиующей, состоит в том, что если она будет открыта в нашем мире, это будет первая новая пространственно-временная симметрия, найденная за последние сто лет. Именно поэтому она — «супер». Я не стану углубляться в математические объяснения, но только знания того, что суперсимметрия переставляет частицы с разным спином, достаточно для понимания этого факта. Так как спины частиц различны, бозоны и фермионы преобразуются по-разному при вращениях в пространстве, поэтому для компенсации этой разницы в преобразования суперсимметрии должны входить пространство и время ^231.
Но не подумайте, что это означает, что вы сможете представить, как выглядит отдельное преобразование суперсимметрии в физическом пространстве. Даже физики понимают суперсимметрию только в терминах ее математического описания и экспериментальных следствий. А последние, как мы скоро увидим, очень впечатляют.