<<
>>

Локализованная гравитация

Вспомним, что когда я впервые вводила понятие браны, я подчеркивала разницу между нежеланием путешествовать далеко от дома и настоящим заточением, когда явно запрещается покидать пределы той области, где что-то или кто-то находится в заключении.

Возможно, вы никогда не бывали в Гренландии, но никакие законы не запрещают этого. Однако посещение некоторых мест сопряжено с большими хлопотами. Даже если путешествие в такие места разрешено, и даже если эти места находятся немногим дальше других мест, где вы бывали, вы все же можете никогда туда не попасть.

Или вообразите, что кто-то сломал ногу. В принципе, этот человек мог бы выходить из дома, когда захочет, но значительно вероятнее, что он будет находиться внутри дома больше времени, чем снаружи, даже когда никакие засовы и ключи не удерживают его внутри.

Аналогично, локализованный гравитон имеет неограниченный доступ в бесконечное пятое измерение. Тем не менее он сильно сконцентрирован в окрестности браны и имеет очень малую вероятность обнаружиться где-то вдали. Согласно общей теории относительности, все, включая гравитон, подвержено действию гравитационной силы. У гравитона нет никаких ограничений, но он ведет себя так, как будто он гравитационно притянут к бране и поэтому остается близко от нее. А поскольку гравитон очень редко выходит за пределы ограниченной области, дополнительное измерение может быть бесконечным, не порождая никаких опасных эффектов, которые закрыли бы такую теорию.

В нашей работе Раман и я сконцентрировались на гравитации в пятимерном пространстве-времени с одним единственным дополнительным измерением пространства. Мы могли поэтому сконцентрироваться на механизме локализации, который мы сейчас обсудим, и который удерживает гравитацию в малой области пятимерного пространства-времени. Я буду предполагать, что если вселенная имеет десять или более измерений, существует некоторая комбинация локализации и скручивания, которая прячет остальные.

Такие дополнительные скрытые измерения не будут влиять на явление локализации, так что мы проигнорируем эти измерения и сфокусируем внимание на пяти измерениях, критически важных для нашего обсуждения.

В нашей модели единственная брана находится на одном конце пятого пространственно-временного измерения. Она отражающая, как и две браны, описанные мной в гл. 20. Предметы, которые ударяются о брану, просто отскакивают назад, так что не происходит потери энергии. Так как модель, которую мы сейчас рассматриваем, содержит только одну эту брану, мы предположим, что частицы Стандартной модели удерживаются на ней; обратим внимание на отличие от модели, обсуждавшейся в предыдущей главе, где частицы Стандартной модели были на Слабой бране, которой теперь больше не существует. Местонахождение частиц Стандартной модели не имеет отношения к геометрии пространства-времени, но оно, конечно, имеет следствия для физики частиц.

Хотя в этой главе нас интересует теория с одной браной, первым сигналом, что бесконечное пятое измерение может иметь право на жизнь, было любопытное свойство закрученной геометрии с двумя бранами. Мы сначала предполагали, что вторая брана выполняет две функции. Одна состояла в том, чтобы удержать частицы Стандартной модели; вторая заключалась в том, чтобы сделать пятое измерение конечным. Как и в случае плоских дополнительных измерений, конечное пятое измерение гарантировало, что на достаточно больших расстояниях гравитация будет такой же, как и в четырехмерном пространстве-времени.

Однако обнаружился любопытный факт, что последняя роль для второй враны была отвлекающим маневром и что вторая брана была несущественна для того, чтобы гравитация воспроизводила исходную гравитацию четырехмерной вселенной: взаимодействия четырехмерного гравитона были виртуально независимы от размера пятого измерения. Расчет показал, что гравитация будет иметь одинаковую интенсивность, если вторая брана будет находиться там, где она есть, или она будет в два раза дальше от Гравитационной браны, или если она будет в десять раз дальше внутри балка, все дальше и дальше от первой браны.

На самом деле четырехмерная гравитация сохранится, даже если наша модель отодвинет вторую брану на бесконечность, иными словами, полностью ее устранит. Это не должно быть верно, если вторая брана и конечное измерение существенны для воспроизведения четырехмерной гравитации.

Это был наш первый ключ к пониманию того, что наше интуитивное желание иметь вторую брану было основано на плоских измерениях и не было обязательно верным в закрученном пространстве-времени. При плоском дополнительном измерении вторая брана обязательна для четырехмерной гравитации. Это можно увидеть с помощью аналогии с разбрызгивателем из гл. 20. Плоское дополнительное измерение будет соответствовать воде, распределяющейся везде одинаково вдоль длинного прямого шланга (рис. 81 на стр. 314)[176]. Чем длиннее разбрызгиватель, тем меньше воды будет попадать на каждый конкретный газон. Если распространить эти рассуждения на бесконечно длинный разбрызгиватель, мы увидим, что вода будет подаваться так скупо, что, по существу, на любой газон конечных размеров вода практически не будет попадать.

Аналогично, если гравитация распространялась бы через все бесконечное однородное измерение, гравитационная сила была бы настолько ослаблена вдоль бесконечного пятого измерения, что она свелась бы к нулю. В геометрии с бесконечным дополнительным измерением должна присутствовать некая тонкость, выходящая за рамки такой простой интуитивной картины, если гравитация должна вести себя четырехмерно. И действительно, закрученное пространствовремя обеспечивает необходимый дополнительный штрих.

Чтобы увидеть, как это действует, еще раз используем аналогию с разбрызгивателем, чтобы выявить пробел в предыдущем рассуждении. Пусть у вас есть бесконечно длинный разбрызгиватель, но вы не подаете воду всюду в равных количествах. Вместо этого вы контролируете то, как распределена вода, чтобы убедиться, что ваш собственный участок хорошо полит. Один способ достичь этого — использовать половину воды для вашего участка, а остальную часть — за его пределами.

В этом случае, хотя удаленные участки будут плохо политы, ваш участок гарантировано получит всю необходимую воду. Ваш участок всегда будет

получать половину воды, даже если разбрызгиватель будет продолжать подавать воду на бесконечно далекое расстояние. При таком неравномерном распределении воды ваш участок будет получать всю необходимую воду. Разбрызгиватель мог быть бесконечным, но вы могли бы не знать расстояние.

Аналогично, функция вероятности гравитона в нашей закрученной геометрии всегда очень велика вблизи Гравитационной браны, несмотря на бесконечное пятое измерение. Как и в предыдущей главе, функция вероятности гравитона имеет максимум на этой бране (рис. 87), и экспоненциально падает, когда гравитон движется от гравитационной браны в пятое измерение. Однако в этой теории функция вероятности гравитона продолжается бесконечно далеко, но она несопоставима с величиной функции вероятности гравитона вблизи браны.

Быстро падающая функция вероятности такого типа показывает, что вероятность обнаружить гравитон вдали от Гравитационной браны необычайно мала, настолько мала, что мы можем в общем случае пренебречь удаленными областями пятого измерения. Хотя в принципе гравитон может находиться где угодно на пятом измерении, экспоненциальное убывание делает функцию вероятности гравитона сильно сконцентрированной в окрестности Гравитационной браны. Ситуация почти (но не совсем) такая, как будто вторая брана удерживает гравитон в ограниченной области.

Большую вероятность обнаружения гравитона вблизи Гравитационной браны и соответствующую концентрацию гравитационного поля в этой области можно сравнить с большой вероятностью нахождения прожорливых уток в пруду вблизи берега.

Обычно утки не плавают равномерно по пруду, а концентрируются вблизи кусочков хлеба, которые им бросают любители птиц (рис. 88). Поэтому размер пруда будет совершенно несущественно влиять на распределение уток. Аналогично, в закрученном пространстве- времени гравитация притягивает гравитон к Гравитационной бране, так что протяженность пятого измерения несущественна.

Можно также увидеть, почему пятое измерение не влияет слишком сильно

в закрученном сценарии силовые линии равномерно распределеныпо всем направлениям на бране. Однако вне браны силовые линии загибаются назад, так что они становятся по существу параллельными бране, почти так, как будто пятое измерение конечно. Даже в случае бесконечного пятого измерения гравитационное поле локализовано вблизи браны, и линии поля расходятся практически так, как будто имеются только четыре (пространственно-временных) измерения

на гравитацию, рассмотрев гравитационное поле, окружающее тело на Гравитационной бране. Мы видели, что в плоских пространственных измерениях силовые линии, исходящие от тела, равномерно распределяются по всем направлениям. Когда существуют конечные дополнительные измерения, линии поля распространяются по всем направлениям до тех пор, пока какая-то из них не достигнет границы и не повернет назад. По этой причине линии гравитационного поля, находящиеся дальше от тела, чем размер дополнительных измерений, распространятся только по трем бесконечным измерениям мира с малой размерностью.

С другой стороны, в закрученном сценарии линии поля распределяются равномерно по всем направлениям, только находясь рядом с браной. В направлении, перпендикулярном бране, их очень мало (рис. 89). Так как линии гравитационного поля распространяются в основном вдоль браны, гравитационное поле выглядит почти тождественным полю, связанному с телом в четырех измерениях. Распространение в пятое измерение настолько мало (не больше, чем планковский масштаб длины 10-33 см), что мы можем его проигнорировать.

Хотя дополнительное измерение бесконечно, оно несущественно для гравитационного поля связанного с браной тела.

Вы можете также понять, каким образом Раман и я разрешили исходную загадку, с которой мы столкнулись: почему размер пятого измерения несуществен для определения интенсивности гравитации. Возвращаясь к аналогии с разбрызгивателем, предположим, что мы задаем распределение воды по всему разбрызгивателю, так что оно напоминает распределение гравитации от резко падающей функции вероятности гравитона: после того как вы забираете половину воды для своего участка, вы отдаете половину оставшейся воды на соседний участок, половину этого количества — на следующий участок и т. д., причем каждый из последующих участков получает вдвое меньше воды, чем предыдущий. Чтобы имитировать вторую брану в пятом измерении, предположим, что мы прекращаем подачу воды после некоторой точки, точно так же, как вторая брана в пятом измерении обрезала бы функцию вероятности гравитона в некоторой точке вдоль пятого измерения. Для того чтобы представить бесконечное пятое измерение, предположим, что разбрызгиватель подает воду неограниченно вдоль своей длины.

Чтобы показать, что размер пятого измерения не имеет отношения к интенсивности гравитации вблизи браны, мы хотели бы показать, что первые несколько участков получают практически одинаковое количество воды, независимо от того, прекращаем ли мы подачу воды после того, как ее получит пятый участок, или десятый участок, или мы вообще не прекращаем подачу воды. Поэтому рассмотрим, что случится, если разбрызгиватель перекроют после первых пяти

участков. Так как шестой и последующие участки будут получать очень мало воды, полное количество воды, которое разбрызгиватель будет подавать на несколько первых участков, будет отличаться от того количества, которое подаст бесконечный разбрызгиватель, лишь на несколько процентов. Если вы перекроете разбрызгиватель после седьмого участка, отличие станет еще меньше. При таком распределении, когда почти вся вода используется на полив нескольких первых участков, удаленные участки, получающие только малую долю воды, несущественны при оценке количества воды, попадающей на несколько первых участковГ

Так как я хочу в следующей главе опять использовать аналогию с утками, я поясню то же самое с помощью подсчета уток, приплывших к берегу, когда кто-то бросает им куски хлеба. Если вы сначала сосчитаете ближайших уток, затем тех, которые подальше, продолжать подсчет скоро станет почти бесполезно. К моменту, когда вы охватите взглядом акваторию чуть дальше вглубь озера, останется очень мало уток, избежавших подсчета. Вам не нужно продолжать считать уток вдали от берега, так как вы уже сосчитали практически всех, ограничившись областью вблизи берега (рис. 88).

Функция вероятности гравитона просто так мала в области за второй браной, что местонахождение второй браны может привести только к пренебрежимо малой разнице в интенсивности взаимодействия четырехмерного гравитона. Иными словами, расстояние, на которое простирается пятое измерение, несущественно для проявляющейся интенсивности четырехмерной гравитации в этой теории, в которой гравитационное поле сосредоточено вблизи Гравитационной браны ^37Г Даже если бы не было второй браны и пятое измерение было бы бесконечным, гравитация продолжала бы выглядеть четырехмерной.

Мы с Раманом назвали наш сценарий локализованной гравитацией. Название выбрано так потому, что функция вероятности гравитона локализована вблизи браны. Хотя, строго говоря, гравитация может просачиваться в пятое измерение, так как это измерение действительно бесконечно, в реальности этого не происходит из-за малой вероятности обнаружения гравитона вдали от браны. Пространство не усечено, но все остается в концентрированной области в окрестности браны. Удаленная брана не приводит к изменению физических процессов на Гравитационной бране, так как мало что из Гравитационной браны рискует удалиться на большое расстояние. Все, что рождается на Гравитационной бране или вблизи нее, так и остается вблизи, в ограниченной области.

Иногда физики ссылаются на эту модель локализованной гравитации как на RS2. Здесь RS — это Рэндалл и Сундрум, но цифра 2 вводит в заблуждение. Она относится к тому факту, что это была вторая работа, которую мы написали по поводу закрученных измерений, но не к тому, что в работе были две браны. Сценарий с двумя бранами, посвященный проблеме иерархии, известен как RS1. (Названия приводили бы к меньшей путанице, если бы мы писали работы в обратном порядке.) В противоположность RS1, сценарий в этой главе не относится к проблеме иерархии, хотя вы можете ввести вторую брану и с тем же успехом

1 Подобной аналогией из реальной жизни может служить река Колорадо, дамбы и ирригационные сооружения на которой обеспечивают подачу воды в юго-западные штаты США, так что, когда река добирается до Мексики, в ней остается очень мало воды. Сооружение дамбы вблизи Калифорнийского залива (что было бы похоже на установку другой браны вдали от Гравитационной браны) не повлияет на количество воды, которое получает Лас-Вегас.

решить эту проблему, как мы коротко рассмотрели в конце гл. 20. Но есть ли в пространстве вторая брана для решения проблемы иерархии или ее нет, локализованная гравитация есть радикальная возможность с важными теоретическими следствиями, идущими вразрез с устоявшимся предположением о том, что дополнительные измерения должны быть компактными.

 

<< | >>
Источник: Рэндалл Лиза. Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. 2011

Еще по теме Локализованная гравитация:

  1. Дешифрирование литологических условий
  2. Глава 14 Политический журналист
  3. Глава 22 Глубокий пассаж: бес конечноедополнительное измерение
  4. Локализованная гравитация
  5. Калуца-клейновские (КК) партнеры гравитона
  6. Глава 23 Задумчивый и раздвигающий пассаж
  7. Осмысление
  8. Локально локализованная гравитация
  9. Глоссарии
  10. §2.Социальная синхронизация как магистральная динамика информационного общества