<<
>>

Механизм Хиггса

В механизме Хиггса фигурирует поле, которое физики называют хиггсовским полем. Как мы видели, поля в квантовой теории поля — это объекты, способные рождать частицы в любой точке пространства.

Каждый тип поля порождает свой собственный специфический тип частиц. Например, источником электронов является электронное поле. Аналогично, хиггсовское поле является источником хиггсовских частиц.

Как тяжелые кварки и лептоны, так и хиггсовские частицы настолько массивны, что мы их не обнаруживаем в обычной материи. Однако в противоположность тяжелым кваркам и лептонам, хиггсовские частицы, которые порождаются хиггсовским полем, никто никогда не наблюдал, даже в опытах, осуществленных на ускорителях больших энергий. Это не означает, что хиггсовские частицы не существуют, просто они слишком тяжелы для того, чтобы рождаться при доступных энергиях. Физики ожидают, что если хиггсовская частица существует, мы сможем найти ее всего через несколько лет, когда вступит в строй ускоритель высоких энергий БАК (Большой адронный коллайдер, по англ. LHC, Large Hadron Collider) в Женеве[116].

Тем не менее мы достаточно ясно уверены в том, что механизм Хиггса приложим к нашему миру, так как это единственный известный способ придать массы частицам Стандартной модели. Это единственно известное решение тех проблем, которые мы представили в предыдущей главе. Так как никто пока что не обнаружил хиггсовскую частицу, мы, к сожалению, до сих пор точно не знаем, что такое хиггсовское поле (или поля).

Природа хиггсовской частицы является одним из наиболее горячо обсуждаемых вопросов в физике частиц. В этом разделе я опишу простейшую из многих моделей-кандидатов, содержащих разные частицы и взаимодействия, которая покажет, как работает механизм Хиггса. Какой бы ни оказалась истинная теория хиггсовского поля, она будет включать механизм Хиггса — спонтанное нарушение симметрии слабого взаимодействия и придание масс элементарным частицам в том же духе, что и модель, которую я сейчас опишу.

В этой модели пара полей испытывает слабое взаимодействие. Будет удобно далее считать, что эти два хиггсовских поля, участвующие в слабом взаимодействии, несут заряд слабого взаимодействия. При описании этого механизма часто допускают небрежности в терминологии, так что иногда «хиггс» означает два поля вместе, а иногда — одно из полей (а часто и хиггсовскую частицу, которую мы надеемся найти). Здесь я буду обозначать отдельные поля как хиггс i и хиггс2.

Оба поля хиггс 1 и хиггс2 могут рождать частицы, но они могут также принимать ненулевые значения, даже если никаких частиц нет. До этого момента мы не сталкивались с подобными ненулевыми значениями для квантовых полей. До сих пор, помимо электрических и магнитных полей, мы рассматривали только квантовые поля, которые рождают или уничтожают частицы, но принимают нулевые значения в отсутствие частиц. Но квантовые поля могут также иметь ненулевые значения, точно так же, как классические электрические и магнитные поля. Согласно механизму Хиггса, одно из хиггсовских полей принимает ненулевое значение. Мы сейчас покажем, что это ненулевое значение и есть в конечном итоге источник масс частиц^7!.

Самый лучший способ представить себе поле, принимающее ненулевое значение, это думать о нем как о пространстве, где есть заряд поля, но нет реальных частиц. Вы должны думать о заряде, который несет поле, как о присутствующем везде. Увы, это довольно абстрактное понятие, так как само поле есть абстрактный объект. Но когда поле принимает ненулевое значение, последствия вполне конкретны. заряд, который должно нести ненулевое поле, существует в реальном мире.

В частности, ненулевое хиггсовское поле распределяет слабый заряд по всей Вселенной. Происходит это так, как будто ненулевое, несущее слабый заряд хиггсовское поле размазывает этот заряд по всему пространству. Ненулевое значение хиггсовского поля означает, что слабый заряд, который переносит хиггс t (или хиггс2), находится везде, даже там, где нет частиц. Вакуум — состояние Вселенной без частиц — сам несет слабый заряд, когда одно из двух хиггсовских полей принимает ненулевое значение.

Слабые калибровочные бозоны взаимодействуют со слабым зарядом вакуума точно так же, как они взаимодействуют с любыми другими слабыми зарядами. Далее, заряд, заполняющий вакуум, блокирует слабые калибровочные бозоны, когда они пытаются распространить взаимодействия на большие расстояния. Чем дальше они пытаются распространиться, тем больше «краски» встречают на своем пути. (Так как заряд реально распространяется по трем измерениям, вам может показаться более понятной аналогия с пятном из краски.)

Роль хиггсовского поля очень похожа на роль гаишников в истории выше и сводится к ограничению влияния слабого взаимодействия очень малыми расстояниями. При попытке передать слабое взаимодействие удаленным частицам слабые калибровочные бозоны, переносящие взаимодействие, влетают в хиггсовское поле, которое мешает их движению и не пропускает дальше. Подобно Икару, который мог свободно удаляться только на расстояние в полмили, слабые калибровочные бозоны движутся без помех только на очень коротких расстояниях порядка ИГ16 см. Слабые калибровочные бозоны и Икар свободно путешествуют на короткие расстояния, но на дальних расстояниях их задерживают.

В вакууме слабый заряд размазан так тонко, что на коротком расстоянии почти не чувствуются следы ненулевого хиггсовского поля и связанного с ним заряда. На коротких расстояниях кварки, лептоны и слабые калибровочные бозоны распространяются свободно, как будто заряд вакуума практически не существует. Поэтому слабые калибровочные бозоны передают взаимодействия на короткие расстояния, как будто оба хиггсовских поля равны нулю.

Однако на больших расстояниях частицы разлетаются все дальше и поэтому испытывают более значительное влияние слабого заряда. Конкретное количество этого заряда зависит от плотности заряда, которая, в свою очередь, зависит от величины ненулевого хиггсовского поля. Путешествие на большие расстояния (и передача слабого взаимодействия) не есть вопрос выбора для слабых калибровочных бозонов низких энергий, так как во время экскурсий на большие расстояния слабый заряд в вакууме накапливается по дороге.

Именно это требуется нам для того, чтобы придать смысл существованию слабых калибровочных бозонов. Квантовая теория поля утверждает, что частицы, которые свободно движутся на короткие расстояния, и только необычайно редко — на большие расстояния, обладают ненулевой массой. Прерванное путешествие слабых калибровочных бозонов означает, что они ведут себя так, как будто обладают массой, так как именно массивные калибровочные бозоны далеко не улетают. Пропитывающий пространство слабый заряд препятствует путешествию слабых калибровочных бозонов, заставляя их вести себя в точности так, как это необходимо для согласия с экспериментами.

Плотность слабых зарядов в вакууме примерно соответствует числу зарядов, находящихся на расстоянии 10-16 см. При такой плотности слабого заряда массы слабых калибровочных бозонов — заряженных W± и нейтрального Z0 — принимают измеренные значения, равные примерно 100 ГэВ.

И это не все, на что способен механизм Хиггса. Он также несет ответственность за массы кварков и лептонов — элементарных частиц, образующих вещество в Стандартной модели. Кварки и лептоны приобретают массу способом, очень похожим на тот, который используется для слабых калибровочных бозонов. Кварки и лептоны взаимодействуют с распределенным в пространстве хиггсовским полем, и поэтому испытывают сопротивление со стороны слабого заряда Вселенной. Как и слабые калибровочные бозоны, кварки и лептоны приобретают массу за счет отскоков от хиггсовкого заряда, распределенного во всем пространстве-времени. Если бы не было хиггсовского поля, эти частицы должны были бы иметь нулевую массу. Но повторим еще раз: ненулевое хиггсовское поле и слабый заряд вакуума препятствуют движению и заставляют частицы иметь массу. Чтобы приобрести свою массу, кваркам и лептонам также необходим механизм Хиггса.

Может создаться впечатление, что механизм Хиггса является избыточно хитроумным способом прибретения массы, чем это необходимо, но квантовая теория поля говорит, что это есть единственный разумный способ приобретения массы слабыми калибровочными бозонами. Красота механизма Хиггса состоит в том, что он придает массу слабым калибровочным бозонам, осуществляя именно ту задачу, которая была поставлена в начале этой главы. Механизм Хиггса выглядит так, как будто симметрия слабого взаимодействия сохраняется на малых расстояниях (что, согласно квантовой механике и специальной теории относительности, эквивалентно высоким энергиям), но нарушается на больших

расстояниях (что эквивалентно низким энергиям). Механизм Хиггса нарушает симметрию слабого взаимодействия спонтанно, и это спонтанное нарушение лежит в основе решения проблемы массивных калибровочных бозонов. Этот более сложный вопрос объясняется в следующем разделе (при желании вы можете пропустить его и перейти сразу к следующей главе). 

<< | >>
Источник: Рэндалл Лиза. Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. 2011

Еще по теме Механизм Хиггса:

  1. § 2. Философские проблемы физической картины мира
  2. Слабое взаимодействие и нейтрино
  3. глава 9 Симметрия: важныйорганизующий принцип
  4. />Внутренние симметрии
  5. Симметрии и взаимодействия
  6. глава 10 Происхождение масс элементарных частиц:спонтанное нарушение симметриии механизм Хиггса
  7. Спонтанно нарушенная симметрия
  8. Проблема
  9. Механизм Хиггса
  10. Спонтанное нарушение симметриислабого взаимодействия
  11. Бонус
  12. Предупреждение
  13. Великое объединение
  14. Глава 12 Проблема иерархии:единственная эффективная«теория просачивания»
  15. Квантовые вклады в массухиггсовской частицы
  16. Виртуальные энергичные частицы
  17. Уединение и сияющие массы
  18. Закрученная геометрияи объединение взаимодействий