<<
>>

Проблема иерархии в физике частиц

  В предыдущем разделе было рассказано о великой загадке — проблеме иерархии в ТВО. Но истинная проблема иерархии еще хуже. Хотя ТВО первая привлекла внимание физиков к проблеме иерархии, виртуальные частицы будут генерировать чересчур большие вклады в массу хиггсовской частицы даже в теории без частиц с массой ТВО.
Даже Стандартная модель находится под подозрением.

Дело в том, что теория, содержащая Стандартную модель в комбинации с теорией тяготения, содержит два очень различающихся энергетических масштаба. Один — это масштаб энергии слабых взаимодействий, равный 250 ГэВ, т. е. энергия, при которой происходит нарушение электрослабой симметрии. Если энергия частиц меньше этого масштаба, становятся явными явления нарушения электрослабой симметрии, а слабые калибровочные бозоны и элементарные частицы имеют массу.

Другим уровнем энергии является планковский масштаб, который на шестнадцать порядков величины, т. е. в десять миллионов миллиардов (1016) раз, больше, чем масштаб энергии слабых взаимодействий. Планковский масштаб энергий определяет интенсивность гравитационных взаимодействий: закон Ньютона утверждает, что интенсивность обратно пропорциональна квадрату этой энергии. И так как интенсивность тяготения мала, планковский масштаб масс (связанный с планковским масштабом энергии формулой Е = тс2) большой. Огромный планковский масштаб масс эквивалентен необычайно слабому тяготению.

До сих пор планковский масштаб масс не возникал в наших обсуждениях физики частиц, так как тяготение настолько мало, что в большинстве относящихся к физике частиц вычислений им можно было спокойно пренебречь. Но именно на этот вопрос хотят получить ответ физики-частичники: почему тяготение столь слабо, что им можно пренебречь в вычислениях по физике частиц? Другой способ сформулировать проблему иерархий состоит в том, чтобы спросить, почему планковский масштаб масс столь огромен, почему он в десять миллионов миллиардов раз больше, чем массы, относящиеся к масштабам физики частиц, которые меньше нескольких сотен ГэВ?

Чтобы дать вам пищу для сравнения, рассмотрим гравитационное притяжение между двумя частицами малой массы, например, между парой электронов.

Гравитационное притяжение примерно в сто миллионов триллионов триллионов триллионов раз слабее электрического отталкивания между этими частицами. Два типа сил будут сравнимы, если электроны будут тяжелее в десять миллиардов триллионов раз. Это колоссальное число, оно сравнимо с тем, сколько раз вы сможете приложить остров Манхеттен непрерывной цепочкой на расстоянии, равном размеру видимой Вселенной.

Планковский масштаб масс неизмеримо больше, чем масса электрона и массы всех других известных нам частиц, и это указывает на то, что тяготение намного слабее других известных взаимодействий. Но почему должно быть такое огромное расхождение между интенсивностями большинства взаимодействий, или эквивалентно, почему планковский масштаб масс настолько огромен по сравнению с массами известных частиц?

Для специалистов по физике частиц трудно смириться с огромным отношением планковского масштаба масс к слабому масштабу масс, составляющим величину порядка десяти миллионов миллиардов. Это отношение больше, чем число минут, прошедших с момента Большого взрыва; оно в тысячу раз больше, чем число детских шариков, которые можно выложить от Земли до Солнца. Это число более чем в сто раз больше числа центов в бюджетном дефиците США! Почему же две массы, описывающие одну и ту же физическую систему, должны настолько различаться?

Если вы не специалист по физике частиц, вам может показаться, что все это не слишком существенная проблема, даже если эти числа очень велики. В конце концов, мы не обязаны объяснять все, и две массы могут быть разными без всяких особых причин. Но ситуация на самом деле намного хуже, чем кажется. Речь идет не только о существовании необъясненного огромного отношения масс. В следующем разделе мы увидим, что в рамках квантовой теории поля любая частица, взаимодействующая с хиггсовской частицей, может участвовать в виртуальном процессе, приводящем к росту массы хиггсовской частицы до значения порядка планковского масштаба масс 1019 ГэВ.

На самом деле, если бы вы попросили любого честного физика-частичника, знающего интенсивность гравитации, но ничего не знающего об измеренных массах слабых калибровочных бозонов, оценить массу хиггсовской частицы, используя квантовую теорию поля, он предсказал бы для хиггсовской частицы, и следовательно для слабых калибровочных бозонов, значения масс, в десять миллионов миллиардов раз большие, чем нужно.

Иначе говоря, он заключил бы из своих вычислений, что отношение планковского масштаба масс и массы хиггсовской частицы (т. е. масштаба массы слабых взаимодействий, определяемого массой хиггсовской частицы) должно быть намного ближе к единице, чем к десяти миллионам миллиардов! Его оценка слабой шкалы масс была бы настолько близка к планковской шкале масс, что все частицы были бы черными дырами, а физика частиц в том виде, как мы ее знаем, просто не существовала бы. Хотя у него могло не быть априорных ожиданий как для значений масштаба массы слабых взаимодействий, так и планковского масштаба масс по отдельности, он мог бы использовать квантовую теорию поля для оценки отношения масс, и полностью бы ошибся. Ясно, что в этом месте существует огромное противоречие. В следующем разделе мы объясним его причину. 
<< | >>
Источник: Рэндалл Лиза. Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. 2011

Еще по теме Проблема иерархии в физике частиц:

  1. ПРИРОДА СИМВОЛА. ПРОБЛЕМА ГРАДАЦИИ
  2. ПРОБЛЕМА ПЕРВОНАЧАЛА В ФИЛОСОФИИ И ФИЗИКЕ А.Н. Спасков
  3. Критерии отграничения научного знания.
  4. 1.3. ПРОБЛЕМА ВОСПРИЯТИЯ РЕАЛЬНОСТЕЙ
  5. 3.2. ФИНСЛЕРИАН И НОВАЯ ФИЗИКА. ТОПОЛОГИЧЕСКОЕ МОДЕЛИРОВАНИЕ РЕАЛЬНОСТИ
  6. Глава 4 Подходы к проблемамтеоретической физики
  7. Глава 12 Проблема иерархии:единственная эффективная«теория просачивания»
  8. Проблема иерархии в тво
  9. Квантовые вклады в массухиггсовской частицы
  10. Проблема иерархии в физике частиц
  11. Виртуальные энергичные частицы
  12. Суперсимметрия: оценка доказательств
  13. Последствия революции
  14. Естественность и уедыненые
  15. Уедыненые и суперсимметрия
  16. Большие измерения и проблема иерархии
  17. Снова о проблеме иерархии