<<
>>

Суперистория

Этот раздел можно, в принципе, пропустить. Он носит исторический характер и в нем не вводится никаких новых понятий, существенных для дальнейшего изложения. Но история развития теории суперсимметрии интересна потому, что она демострирует плодотворность новых идей и путь, на котором теория струн и построение моделей иногда образуют продуктивный симбиоз.

Теория струн послужила толчком для поиска суперсимметрии, теория суперструн — наилучший возможный вариант теории струн для описания реального мира — родилась только благодаря идеям, пришедшим из супергравитации, т. е. суперсимметричной теории, включающей гравитацию.

Пьер Рамон, физик французского происхождения, в 1971 году предложил первую суперсимметричную теорию. Он рассматривал не четыре измерения, в которых (как мы привыкли думать) мы живем, а два — одно пространственное и одно временное. Цель Рамона состояла в том, чтобы найти способ включения фермионов в теорию струн. По техническим причинам, первоначальная версия теории струн включала только бозоны, однако в любой теории, которая надеется описать наш мир, без фермионов не обойтись.

Теория Рамона содержала двумерную суперсимметрию и превратилась в теорию фермионных струн, построенную им совместно с Андре Невье и Джоном Шварцем. Теория Рамона была первой суперсимметричной теорией, появившейся в западном мире; одновременно суперсимметрию открыли Гольфанд и Лихтман в Советском Союзе, но их работы были спрятаны от Запада за железным занавесом.

Так как четырехмерная квантовая теория поля опиралась на значительно более солидное основание, чем теория струн, возник очевидный вопрос: возможна ли суперсимметрия в четырех измерениях? Однако, поскольку суперсимметрия сплетена со структурой пространства-времени, обобщить ее двумерный вариант на случай четырех измерений оказалось непростой задачей. В 1973 году немецкий физик Юлиус Весе и уроженец Италии физик Бруно Зумино построили четырехмерную суперсимметричную теорию.

Независимо, в Советском Союзе Дмитрий

Волков и Владимир Акулов построили другую четырехмерную суперсимметричную теорию, но холодная война снова воспрепятствовала обмену идеями.

С развитием четырехмерной суперсимметричной теории, все большее количество физиков обращало на нее внимание. Однако модель Весса—Зумино 1973 года не могла включить все частицы Стандартной модели; никто не знал, как добавить в четырехмерную суперсимметричную теорию переносящие взаимодействия калибровочные бозоны. В 1974 году эту трудную задачу решили итальянские теоретики Сержио Феррара и Бруно Зумино.

Возвращаясь с конференции «Струны-2002», по пути из Кембриджа в Лондон, Сержио рассказал мне, почему поиск правильной теории был бы немыслимо трудной задачей, если бы не использование формализма суперпространства — абстрактного расширения пространства-времени, имеющего дополнительные фермионные измерения. Суперпространство — необычайно сложное понятие, и я не буду даже пытаться его объяснить. Важно то, что этот совершенно новый тип измерения, не похожий на привычные пространственные измерения, играет ключевую роль в становлении суперсимметрии. Этот чисто теоретический инструмент продолжает и сегодня упрощать расчеты суперсимметрии.

Теория Феррары—Зумино показала физикам, как включить в суперсимметричную теорию электромагнетизм, слабые и сильные взаимодействия. Однако суперсимметричные теории все еще не включали гравитацию. Поэтому в суперсимметричной теории мира оставался открытым вопрос, может ли она включить это остающееся взаимодействие. В 1976 году три физика, Сержио Феррара, Дэн Фридман и Питер ван Нивенхойзен решили эту задачу, построив теорию супергравитации — сложную суперсимметричную теорию, включающую гравитацию и теорию относительности.

Любопытно, что пока формулировалась теория супергравитации, независимо развивалась и теория струн. В одной из ключевых теоретических работ по теории струн Фердинандо Льоцци, Джоэл Шерк и Дэвид Олив обнаружили стабильную модель, являющуюся результатом развития теории фермионных струн Рамона, Невье и Шварца. Оказалось, что теория фермионных струн содержит тип частиц, с которыми никто ранее не сталкивался нигде, кроме теорий супергравитации. Свойства новой частицы были тождественны свойствам суперсимметричного партнера гравитона, получившего имя гравитино, и в действительности им она и оказалась.

Параллельно шло развитие и супергравитации, поэтому физики ухватились за этот общий элемент двух теорий и, работая над ним, вскоре осознали, что суперсимметрия присутствует в теории фермионных струн. В этот момент родилась теория суперструн.

В следующей главе мы вернемся к теории струн и теории суперструн. Сейчас же мы сосредоточимся на другом важном приложении суперсимметриии — ее следствиях, касающихся физики частиц и проблемы иерархии.

<< | >>
Источник: Рэндалл Лиза. Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. 2011

Еще по теме Суперистория:

  1. Суперистория