<<
>>

Свернутые измерения в физике

  Теория струн — наиболее многообещающий кандидат на теорию, объединяющую квантовую механику и тяготение, — дает конкретный повод для размышлений о дополнительных измерениях. Действительно, единственные известные нам согласованные версии теории струн обременены этими удивительными придатками.
Однако, хотя появление теории струн в мире физики укрепило респектабельность дополнительных измерений, сама идея этих измерений возникла значительно раньше.

В начале двадцатого века теория относительности Эйнштейна распахнула двери для идеи о возможном существовании дополнительных измерений пространства. Теория относительности описывает тяготение, но эта теория не говорит нам, почему мы ощущаем то конкретное тяготение, которое мы знаем. Теория Эйнштейна не отдает предпочтения никакому конкретному числу пространственных измерений. Она одинаково хорошо работает в случае трех, четырех или десяти измерений. Почему же тогда кажется, что их только три?

В 1919 году, следуя по пятам за эйнштейновской общей теорией относительности (завершенной в 1915 году), польский математик Теодор Калуца заметил эту черту теории Эйнштейна и смело предположил существование четвертого пространственного измерения, нового невидимого измерения у пространства[15]. Он полагал, что дополнительное измерение должно как-то отличаться от трех знакомых бесконечных измерений, хотя не уточнил как. Целью Калуцы при введении лишнего измерения было объединение сил тяготения и электромагнетизма. Хотя детали этой неудавшейся попытки объединения сейчас несущественны, дополнительное измерение, которое он столь дерзко ввел, оказалось очень к месту.

Калуца написал свою статью в 1919 году. Эйнштейн, который был рецензентом журнала и оценивал возможность публикации статей в научном журнале, колебался в отношении достоинств этой идеи. Он задержал публикацию статьи Калуцы на два года, но в конце концов признал ее оригинальность.

Но Эйнштейн все же хотел знать, чем было это измерение. Где оно было и чем отличалось от других? Насколько далеко оно простиралось?

Эти вопросы были очевидными. Те же самые вопросы могут тревожить и вас. На вопросы Эйнштейна не было никакого отклика вплоть до 1926 года, когда шведский математик Оскар Клейн задумался над ними. Клейн предположил, что дополнительное измерение может быть свернуто в форме окружности и быть чрезвычайно малым, равным 10~33 см[16], т. е. одной миллиардной от триллион триллионной доли сантиметра. Такое крохотное свернутое измерение должно существовать везде, иначе говоря, в каждой точке пространства должна существовать своя крохотная окружность размером 10-33 см.

Эта маленькая величина представляет собой планковскую длину, величину, которая будет для нас существенной позднее, когда мы детальнее обсудим грави

тацию. Клейн выбрал планковскую длину потому, что это единственная длина, которая может естественно возникнуть в квантовой теории гравитации, а гравитация связана с формой пространства. Пока что все, что нам нужно знать о план- ковской длине, — это то, что она чрезвычайно, невообразимо мала, много меньше, чем все, что мы когда-либо будем иметь шанс измерить. Она на двадцать четыре порядка величины[17] меньше размера атома и на девятнадцать порядков величины меньше протона. Нетрудно проглядеть что-то столь же маленькое, как это.

В повседневной жизни есть много примеров вещей, протяженность которых в одном из трех обычных измерений слишком мала, чтобы быть замеченной. Картина на стене или бельевая веревка с большого расстояния кажутся протяженными не в трех, а в меньшем числе измерений. Мы не видим толщину слоев краски или толщину веревки. Для обычного наблюдателя картина выглядит так, как будто у нее только два измерения, а веревка для белья кажется имеющей только одно, даже если мы знаем, что на самом деле эти вещи имеют три измерения.

Единственный способ разглядеть трехмерную структуру таких вещей — посмотреть на них поближе или с достаточно хорошим разрешением. Если мы протянем шланг через футбольное поле и посмотрим на него с вертолета, как показано на рис. 15, шланг будет казаться одномерным. Но с близкого расстояния вы можете различить два измерения поверхности шланга и трехмерный объем, который эта поверхность ограничивает.

Однако для Клейна неразличимо мала была не толщина какой-то вещи, а малым было само измерение. Так что же означают слова, что измерение мало? Как будет выглядеть вселенная со свернутым измерением с точки зрения того, кто живет в ней? Опять же ответ на этот вопрос зависит полностью от размера свернутого измерения. Рассмотрим пример, показывающий, как будет выглядеть мир для разумных существ, которые слишком малы или, наоборот, слишком велики по сравнению с размером свернутого дополнительного измерения. Поскольку нарисовать четыре или больше измерений невозможно, то на первом рисунке я представлю вселенную с малым компактифицированным измерением, имеющую только два измерения, причем одно из них туго скручено до очень малого размера (рис. 16).

Представьте снова садовый шланг, который можно рассматривать как длинный резиновый лист, свернутый в трубку малого поперечного сечения. На этот раз мы полагаем, что шланг — это вся вселенная (а не объект внутри вселен-


ной)1. Если бы вселенная имела форму такого садового шланга, у нас было бы одно очень длинное измерение и одно очень маленькое, свернутое измерение. Это именно то, что мы хотим.

Для небольшого существа, например, плоского жука, живущего во вселенной садового шланга, она выглядела бы двумерной. (В таком сценарии наш жук должен быть приклеен к поверхности шланга — двумерная вселенная не включает внутренность шланга, которая трехмерна.) Жук может ползать в двух направлениях: вдоль шланга или вокруг него.

Как Додо, который мог бегать по кругу в своей двумерной вселенной, жук, начавший движение из какой-то точки на шланге, может проползти вокруг него и в конце концов вернуться к тому месту, с которого начал. Так как второе измерение мало, жуку не придется слишком далеко уползать, чтобы вернуться.

Если популяция живущих на шланге жуков испытывает воздействие сил, например, электрических или гравитационных, эти силы способны притягивать или отталкивать жуков в любом направлении по поверхности шланга. Жуки могут быть отделены друг от друга либо вдоль длины шланга, либо по его окружности, и могут испытывать действие любой силы, присутствующей на шланге. Если разрешение достаточно для того, чтобы различать столь малые расстояния, как диаметр шланга, силы и тела проявляют оба измерения, которые и есть на самом деле.

Однако, если бы наш жук мог обозреть окружающее его пространство, он бы заметил, что два измерения очень различны. Одно измерение, вдоль длины шланга, очень большое. Он может быть даже бесконечно большим. В то же время другое измерение очень мало. Два жука никогда не расползутся очень далеко друг от друга в направлении вокруг шланга. И жук, пытающийся совершить далекое путешествие в этом направлении, очень скоро попадет туда, откуда он начал свой путь. Сообразительный жук, любящий тренировать свои ноги, знал бы, что его вселенная двумерна, и что одно измерение тянется далеко-далеко, а другое очень мало и свернуто в окружность.

Однако точка зрения жука совершенно отлична от точки зрения, которую имели бы существа вроде нас во вселенной Клейна, в которой дополнительное измерение свернуто до чрезвычайно малого размера, равного 10~33 см. В отличие 1

Садовый шланг всегда был популярной аналогией для иллюстрации понятия свернутых измерений. Я узнала об этой аналогии в математическом лагере, а совсем недавно она была использована в книге Брайана Грина «Элегантная Вселенная» (рус. пер.: Грин Б. Элегантная Вселенная: Суперструны, скрытые размерности и поиски окончательной теории.

М.: Книжный дом «Либроком^/URSS, 2011. — Прим. пер.). Я буду использовать ту же аналогию, так как, во-первых, она очень хороша, а во-вторых, я хочу расширить ее в следующих разделах (и последующих главах), включив в рассмотрение разбрызгиватели для объяснения гравитации с дополнительными измерениями.

от жука мы никогда не станем достаточно маленькими, чтобы обнаружить или прогуляться по измерению столь малого размера.

Итак, чтобы завершить нашу аналогию, предположим, что во вселенной садового шланга живет существо, значительно большее, чем жук, обладающее только грубым разрешением и поэтому не способное детектировать малые тела или структуры. Так как линза, через которую большое существо наблюдает за миром, смазывает все детали, столь же малые как диаметр шланга, то с точки зрения этого существа дополнительное измерение будет невидимым. Существо будет видеть только одно измерение. Понять, что вселенная садового шланга имеет более одного измерения, можно, только если обладать зрением столь острым, чтобы различить нечто столь малое, как ширина шланга. Но если зрение не такое острое, чтобы различить эту ширину, существо всегда будет видеть только линию.

Кроме того, физические явления не выдадут существования дополнительного измерения. Большие существа во вселенной садового шланга заткнут второе, маленькое измерение и никогда не узнают, что оно здесь было. Не имея возможности обнаружить структуру или изменения вдоль дополнительного измерения типа раскачки или волн материи или энергии, они никогда не зарегистрируют его существование. Любые изменения вдоль второго измерения будут полностью смыты, подобно тому как вы никогда не заметите какое-либо изменение толщины листа бумаги в масштабе его атомной структуры.

Двумерный мир, в котором оказалась во сне Афина, был очень похож на вселенную садового шланга. Так как у Афины были возможности становиться как большой, так и малой относительно ширины 2В-ленда, она могла наблюдать эту вселенную как с точки зрения кого-то большего по размерам, по сравнению со вторым измерением этой вселенной, так и с точки зрения кого-то меньшего по размерам.

Для большой Афины 2В-ленд и ID-ленд выглядели полностью одинаковыми. Только маленькая Афина могла указать на различие. Так и во вселенной садового шланга существо будет находиться в полном неведении относительно дополнительного пространственного измерения, если не станет достаточно маленьким, чтобы его увидеть.

Вернемся к вселенной Калуцы—Клейна, у которой есть три известных нам пространственных измерения и дополнительное невидимое измерение. Чтобы обдумать ситуацию, можно опять использовать рис. 16. В идеале, мне следовало бы нарисовать четыре пространственных измерения, но, к сожалению, это невозможно (не поможет даже книжка-раскладушка с объемными разворотами). Однако, поскольку три бесконечных измерения, образующих наше пространство, качественно одинаковы, мне нужно реально нарисовать только одно типичное измерение. Это позволяет мне использовать другое измерение, чтобы представить невидимое дополнительное измерение. Показанное здесь другое измерение свернуто и этим оно фундаментально отличается от трех других.

Точно так же как в примере с двумерной вселенной садового шланга, четырехмерная вселенная Калуцы—Клейна с одним крохотным свернутым измерением будет казаться нам имеющей на одно измерение меньше, чем те четыре, которые есть на самом деле. Так как мы ничего не можем знать о дополнительном пространственном измерении, пока не сумеем получить свидетельство о его структуре в крохотном масштабе этого измерения, вселенная Калуцы—Клейна будет казаться трехмерной. Свернутые или компактифицированные дополнительные измерения никогда не будут обнаружены, если их масштабы достаточно

малы. Позднее мы исследуем вопрос, насколько они должны быть малы, однако сейчас достаточно понимать, что планковская длина находится далеко за порогом измеримости.

В жизни и в физике мы регистрируем только те детали, которые действительно для нас важны. Если вы не можете наблюдать детальную структуру, вы можете с тем же успехом считать, что ее нет. В физике это пренебрежение локальными деталями реализуется в идее эффективной теории, о чем шла речь в предыдущей главе. Все, что имеет значение в эффективной теории, — это вещи, которые вы можете реально воспринимать. В приведенном выше примере мы будем использовать трехмерную эффективную теорию, в которой подавлена информация о дополнительных измерениях.

Хотя свернутое измерение во вселенной Калуцы—Клейна находится рядом с нами, оно так мало, что любое изменение в нем является незаметным. Точно так же, как различия между жителями Нью-Йорка не имеют никакого значения для приезжего, структура дополнительных измерений вселенной несущественна, когда ее детали изменяются в столь крохотном масштабе. Даже если окажется, что на фундаментальном уровне имеется много больше измерений, чем те, с которыми мы знакомы в повседневной жизни, все, что мы видим, будет описываться с помощью тех измерений, которые мы наблюдаем. Экстремально малые дополнительные измерения ничего не изменяют в нашем видении мира, или даже в том, как мы производим большинство физических расчетов. Даже если дополнительные измерения существуют, но мы неспособны видеть их или знать о них по опыту, то можно ими пренебречь и при этом правильно описывать то, что мы видим. Позднее я познакомлю вас с модификациями этой простой картины, для которых это не всегда будет справедливо, но они будут включать дополнительные предположения.

Еще один важный момент, касающийся свернутого измерения, можно понять из рис. 17, где показан шланг или вселенная с одним измерением, свернутым в окружность. Возьмем любую точку вдоль бесконечного измерения. Заметим,

что в каждой без исключения точке находится полное компактное пространство, а именно, окружность. Шланг состоит из всех таких окружностей, склеенных вместе, как те слои, о которых шла речь в гл. 1.

На рис. 18 приведен другой пример. Здесь имеются не одно, а два бесконечных измерения, и одно дополнительное измерение, свернутое в окружность. В этом ^случае окружность находится в каждой без исключения точке двумерного пространства. И если бы было три пространственных измерения, свернутые измерения существовали бы в каждой точке трехмерного пространства. Вы можете сравнить точки в пространстве с дополнительными измерениями с клетками вашего тела, каждая из которых содержит принадлежащую вам полную последовательность ДНК. Аналогично, каждая точка в вашем трехмерном пространстве должна быть хозяйкой полностью компактифицированной окружности.


До сих пор мы рассматривали только одно дополнительное измерение, свернутое в окружность. Но все, что было сказано, должно выполняться и тогда, когда свернутое измерение принимает другую, вообще говоря, любую форму. Может случиться и так, что имеется два или более крохотных свернутых измерений любой формы. Все без исключения измерения, которые достаточно малы, будут для нас совершенно невидимыми.

Рассмотрим пример с двумя свернутыми измерениями. Эти свернутые измерения могут принимать много разных форм. Мы выберем тор, имеющий форму бублика, в котором два дополнительных измерения одновременно свернуты в окружности. Это показано на рис. 19. Если обе окружности — та, которая навивается через дырку в бублике, и та, которая навивается вокруг самого бублика, — достаточно малы, мы никогда не увидим двух дополнительных свернутых измерений.

Но это только один пример. В случае большего числа измерений имеется огромное количество возможных компактных пространств, т. е. пространств со свернутыми измерениями, отличающихся друг от друга конкретным способом, которым эти измерения свернуты. Одной категорией компактных пространств, важных для теории струн, являются многообразия Калаби—Яу, названные по именам итальянского математика Эудженио Калаби, первым предложившего эти особые формы, и уроженца Китая гарвардского математика Шин Тун Яу, показавшего, что эти формы математически возможны. В этих геометрических формах дополнительные измерения свернуты и закручены весьма необычным способом. Как и во всех случаях компактификации, измерения сворачиваются на малых расстояниях, но они переплетаются таким сложным образом, что это очень трудно нарисовать .

Какую бы форму не принимали свернутые дополнительные измерения, и сколько бы их не было, в каждой точке вдоль бесконечных измерений будет находиться маленькое компактное пространство, содержащее в себе все свернутые измерения. Поэтому, если теоретики, занимающиеся струнами, правы, то везде в видимом пространстве — на кончике вашего носа, на северном полюсе Венеры, в точке на теннисном корте, куда вы послали ракеткой мяч во время последней подачи, — должно находиться шестимерное многообразие Калаби—Яу невидимого крохотного размера. В каждой точке пространства должна присутствовать многомерная геометрия.

Теоретики, занимающиеся струнами, часто предполагают, как это уже сделал Клейн, что свернутые измерения имеют размеры, равные планковской длине 10-33 см. Компактные измерения планковских размеров были бы необычайно хорошо спрятаны. Почти наверняка у нас нет способов обнаружить нечто столь малое. Поэтому весьма вероятно, что дополнительные измерения планковских размеров не оставляют никаких видимых следов своего существования. Следовательно, даже если мы живем во вселенной с дополнительными измерениями планковских размеров, мы будем регистрировать только три обычных измерения. Вселенная может иметь много таких крохотных измерений, но может статься, что мы никогда не достигнем достаточной разрешающей способности, чтобы их обнаружить.

<< | >>
Источник: Рэндалл Лиза. Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. 2011

Еще по теме Свернутые измерения в физике:

  1. 23• Замысел 'коперниканского"разума"'
  2. МЕТОДИКА ДИАГНОСТИЧНОГО ОПИСАНИЯ ЦЕЛИ ФОРМИРОВАНИЯ ОПЫТА УЧАЩИХСЯ НА ЭТАПЕ ОПЕРАТИВНОГО ЦЕЛЕОБРАЗОВАНИЯ
  3. Эффективные теории
  4. Свернутые измерения в физике
  5. О других способах ограничить измерения
  6. Суперструнная революция
  7. Стойкость старого режима
  8. Еще о дуальности
  9. Теория Хоржавы—Виттена
  10. Определение масс частиц Калуцы—Клейна
  11. Экспериментальные ограничения