<<
>>

Три из двух

В оставшейся части этой главы, вместо того чтобы размышлять о пространствах, имеющих более трех измерений, я поговорю о том, как с помощью наших ограниченных зрительных возможностей мы собираемся представлять и рисовать три измерения, используя двумерные образы.

Понимание того, как мы совершаем этот пассаж от двумерных образов к трехмерной реальности, пригодится позднее, когда мы будем интерпретировать малоразмерные «картинки» многомерных миров. Относитесь к этому разделу как к разминочному упражнению, для того чтобы приучить ваш мозг к дополнительным измерениям. Было бы неплохо помнить, что в обычной жизни вы все время имеете дело с размерностью. На самом деле все это не так уж незнакомо.

Часто все, что мы можем видеть, — это кусочки поверхностей, которые обрамляют вещи. Хотя эта внешняя оболочка и изгибается в трехмерном пространстве, она имеет два измерения, так как для определения положения любой точки на ней нужно задать два числа. Мы приходим к выводу, что поверхность не трехмерна, так как у нее нет толщины.

Смотря на картины, экраны кинотеатров, мониторы компьютеров или рисунки в этой книге, мы, вообще говоря, смотрим не на трехмерные, а на двумерные изображения. Но тем не менее мы можем восстановить изображенную трехмерную реальность.

Для построения трех измерений мы можем использовать двумерную информацию. Этот процесс включает урезание информации при создании двумерных представлений и одновременно попытку сохранить достаточно информации для воспроизводства важных элементов исходного объекта. Обратимся к часто используемым методам сведения объектов более высокой размерности к меньшему числу измерений: нарезка слоями, проектирование, голография и иногда просто пренебрежение размерностью, — и обратному процессу восстановления тех трехмерных объектов, которые они представляют.

Наименее сложный способ заглянуть за поверхность — сделать тонкие слои.

Каждый слой двумерен, но комбинация слоев образует реальный трехмерный объект. Например, когда вы покупаете ветчину в магазине, трехмерный кусок окорока быстро нарезают на много двумерных ломтей1. Складывая все ломти, можно реконструировать форму всего трехмерного куска.

Эта книга трехмерна. Однако ее страницы имеют только два измерения. Объединение двумерных страниц образует книгу[10]. Можно многими разными способами проиллюстрировать это объединение. Один способ показан на рис. 8, на котором мы смотрим на книгу сбоку. На этом рисунке мы опять играем с размерностью, так как каждая линия представляет страницу. Поскольку все мы

              Ломти окорока на самом деле имеют некоторую толщину, поэтому они хоть и тонкие, но трехмерные. Их размер в этом дополнительном измерении настолько мал, что в хорошем приближении можно считать ломти двумерными. Однако даже при произвольной толщине двумерных ломтей можно представить себе, как они складываются вместе, образуя трехмерный кусок.


знаем, что линии соответствуют двумерным страницам, эта иллюстрация всем ясна. Позднее мы используем аналогичный подход, чтобы изобразить объекты в многомерных мирах.

Разрезание на слои — лишь один из способов заменить высшие измерения более низкими. Другим способом является проектирование — технический термин, заимствованный из геометрии. Проектирование содержит строгие предписания для создания образа объекта, имеющего меньшее число измерений. Тень на стене — один из примеров двумерной проекции трехмерного объекта. На рис. 9 показано, каким образом теряется информация, когда мы (или кролики) осуществляем проектирование. Точки на тени определяются только двумя координатами, лево—право или вверх—вниз на стене.

Однако проектируемый объект имеет третье пространственное измерение, которое не сохраняется в проекции.

Простейший способ осуществить проектирование состоит в том, чтобы отбросить одно измерение. Например, на рис. 10 показан куб в трех измерениях, спроектированный на два измерения. Проекция куба может иметь много форм, простейшая из которых есть квадрат.


Возвращаясь к предыдущим примерам графиков Икара и Афины, мы можем построить двумерный график Икара, если пренебрежем его вождением спортивных автомобилей. На самом деле нам не важно, сколько сов выращивает Афина, поэтому мы можем построить не пятимерный, а четырехмерный график. Пренебрежение совами Афины и есть проектирование.

Проекция теряет информацию об исходном многомерном объекте (рис. 9). Однако, когда с помощью проектирования мы создаем картину с меньшим числом измерений, мы иногда добавляем информацию, помогающую восстановить часть потерянного. Дополнительной информацией может быть штриховка или цвет, как в живописи или фотографии. Это может быть число, как на топографических картах для указания высоты местности. Наконец, какие-либо метки могут вообще отсутствовать, и в этом случае двумерное описание просто несет меньше информации.

Если бы не оба наших глаза, работающих совместно и позволяющих реконструировать три измерения, все, что мы видим, было бы проекциями. Если закрыть один глаз, восприятие глубины становится грубее. Один глаз создает двумерную проекцию трехмерной реальности. Чтобы воспроизвести три измерения, нужны два глаза.

У меня близорукость на одном глазу и дальнозоркость на другом, поэтому я не могу должным образом объединять изображения от обоих глаз, если не надеваю очков (что случается редко). Хотя мне сказали, что у меня будут проблемы с реконструкцией трех измерений, обычно я этих проблем не замечаю — все вокруг меня выглядит трехмерным.

Это происходит потому, что для реконструкции трехмерных образов я полагаюсь на тени и перспективу (и свое знакомство с внешним миром).

Однако однажды в пустынной местности мы с другом пытались дойти до далекого утеса. Мой друг убеждал меня, что мы должны двигаться прямо, а я никак не могла понять, почему он настаивает, чтобы мы шли прямо сквозь скалу. Оказалось, что скала, про которую я думала, что она выступает непосредственно из утеса, полностью загораживая нам путь, находилась на самом деле значительно ближе к нам, перед утесом. Эта скала, которая, как мне казалось, преградит нам путь, на самом деле вообще не имела отношения к утесу. Путаница возникла из-за того, что мы были вблизи утеса около полудня, когда нет никаких теней, и у меня не было способа построить третье измерение, которое бы указало мне, каким образом далекие утесы и скалы расположены относительно друг друга. Я никогда не осознавала своей компенсирующей стратегии с использованием теней и перспективы, до тех пор пока она не дала сбой.

Живопись и черчение всегда требуют, чтобы художники сводили все, что они видят, к спроектированным образам. В средневековом искусстве это делалось максимально простым образом. На рис. 11 показано мозаичное изображение города в виде двумерной проекции. Ничто на этой мозаике не указывает на третье измерение, нет никаких меток или индикаторов его существования.

Со времен Средневековья художники разработали способы делать такие проекции, которые частично исправляют потерю на картине одного измерения. Один подход, противоположный средневековому уплощению пространства, это метод, использованный кубистами в двадцатом веке. Кубистическая картина (например, «Портрет Доры Маар» Пикассо, рис. 12) представляет одновременно


несколько проекций, каждая из которых получена под другим углом, и поэтому передает ощущение трехмерности субъекта.

Однако большинство западноевропейских художников со времен Ренессанса для создания иллюзии третьего измерения использовали перспективу и затенение. Одним из важнейших навыков в живописи является способность так свести трехмерный мир к двумерному представлению, чтобы зритель мог обратить процесс и восстановить исходную трехмерную сцену или объект. Наше культурное воспитание приучило нас знать, как расшифровывать образы, даже при отсутствии полной трехмерной информации.


Художники пытались даже представить на двумерных плоскостях многомерные объекты. Например, на картине Сальвадора Дали «Распятие» (Corpus Ну- percubus) (рис. 13) крест показан как развернутый гиперкуб. Этот объект состоит из восьми кубов, прикрепленных друг к другу в четырехмерном пространстве. Именно эти кубы Дали и нарисовал. На рис. 14 я показываю несколько проекций гиперкуба.

Я уже упоминала физический пример — квазикристаллы, которые выглядят как проекции многомерного кристалла на наш трехмерный мир. Проекции можно также использовать для практических, а не только художественных целей. В медицине есть много примеров, когда трехмерные объекты проектируются на два измерения. Рентген органов всегда фиксирует двумерную проекцию. В методе компьютерной томографии изображения складываются из множества рентгеновских снимков и реконструируют более информативное трехмерное представление. Имея в распоряжении рентгеновские снимки, сделанные под достаточно большим числом углов, можно использовать интерполяцию, чтобы собрать полные трехмерные изображения. С другой стороны, магнито-резонансное сканирование восстанавливает трехмерный объект по срезам.

Другим способом записи трех измерений на двумерной поверхности является голографическое изображение. Хотя голографическое изображение записывается на поверхности меньшей размерности, оно на самом деле несет всю информацию об исходном пространстве большей размерности.

Возможно, один из образцов такой техники лежит в вашем кошельке: трехмерное изображение на вашей кредитной карте и есть голограмма.

Голографическое изображение записывает взаимосвязи между светом в разных местах, так что затем можно восстановить всю многомерную картину. Этот принцип во многом похож на тот, который используется в хорошем стереопроигрывателе, позволяющем слышать, где находились одни инструменты по отношению к другим во время записи. С помощью информации, запасенной в голограмме, глаз действительно может реконструировать тот трехмерный объект, который эта голограмма представляет.

Перечисленные методы показывают, как можно получить больше информации от образа с меньшим числом измерений. Однако, может быть, все, что нам действительно нужно, так это поменьше информации. Часто мы просто не обращаем внимания на все три измерения. Например, нечто может быть настолько тонким в третьем измерении, что в этом направлении не происходит ничего интересного. Даже несмотря на то, что краска на этой странице реально трехмерна, мы ничего не потеряем, если будем считать ее двумерной. До тех

пор, пока мы не посмотрим на страницу под микроскопом, у нас просто нет достаточного разрешения, чтобы увидеть толщину краски. Проволока выглядит одномерной, хотя при более близком рассмотрении вы можете увидеть, что она имеет двумерное поперечное сечение, и тем самым все три измерения.

<< | >>
Источник: Рэндалл Лиза. Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. 2011

Еще по теме Три из двух:

  1. УМЕЕТЕ ЛИ ВЫ СЧИТАТЬ ДО ДВУХ?
  2. 14.2. ИГРА ДВУХ УЧАСТНИКОВ С НУЛЕВОЙ СУММОЙ И ЕЕ ПЛАТЕЖНАЯ МАТРИЦА
  3. 14.7. ОБЩИЙ СЛУЧАЙ ИГРЫ ДВУХ^УЧАСТНИКОВ НУЛЕВОЙ СУММОЙ
  4. 8.3. Двухшаговый метод наименьших квадратов
  5. Оценивание систем одновременных уравнений. Двухшаговый метод наименьших квадратов
  6. Глава 5. «Черное двухлетие» и победа Народного фронта (1933–1936 годы)
  7. II МАЛАЯ ФУГА (двухголосная) Трансцендентальная феноменология и музыка
  8. ДВУХЧАСТНОЕ ДЕЛЕНИЕ ОБЩЕСТВА
  9. О двухступеичатости исследовательских моделей художественного текста
  10. § 14. Изменения покупательной силы денег и двухсторонние обязательства
  11. § 35. II (двухвладыческое без многолетия) солнечное титло