<<
>>

Закрученная геометрия и дуальность

В гл. 20 и 21 я объяснила некоторые следствия закрученной геометрии пространства-времени, которую предложили Раман Сундрум и я. В этой геометрии массы и размеры объектов зависят от расположения в пятом измерении, и еще гравитация локализована в окрестности браны.

Но есть еще одна замечательная черта у этого закрученного пространства-времени, известного также как пространство анти-де Ситтера, о которой я теперь должна вам рассказать, — черта, которая порождает дальнейшие вопросы о размерности.

Эта замечательная черта пространства анти-де Ситтера заключается в существовании дуальной четырехмерной теории. Ход теоретических мыслей говорит нам, что все, что происходит в пятимерном пространстве анти-де Ситтера, может быть описано в рамках дуальной четырехмерной теории, в которой присутствуют крайне сильные взаимодействия с особыми свойствами. В соответствии с этой таинственной дуальностью все в пятимерной теории имеет аналог в четырехмерной теории. И наоборот.

Хотя математические рассуждения и говорят нам, что пятимерная теория в пространстве анти-де Ситтера эквивалента некоторой четырехмерной, мы не всегда знаем точный набор частиц в этой четырехмерной дуальной теории. Но в 1997 Хуан Малдасена, специалист по струнам (родом из Аргентины, сейчас в Принстоне), представил явный пример такой дуальности в этой теории, чем вызвал лихорадочную активность в теории струн. Он осознал, что версия теории струн с большим числом перекрывающихся D-бран, на которых струны сильно взаимодействуют, может быть описана или как четырехмерная квантовая теория поля, или как десятимерная теория гравитации, в которой пять из десяти измерений свернуты, а остальные пять образуют пространство анти-де Ситтера. Как могут четырехмерная теория и пяти- или десятимерная теория иметь одинаковые следствия? Например, что есть аналог объекта, движущегося в пятом измерении? Ответ состоит в том, что объект, движущийся в пятом измерении, представляется в дуальной четырехмерной теории как объект, который растет или сжимается. Это в точности похоже на тень Афины на Гравибране, которая росла по мере

того, как она уходила от Гравибраны через пятое измерение.

Кроме того, объекты, движущиеся мимо друг друга в пятом измерении, соответствуют объектам, которые и растут, и сжимаются, и перекрываются в четырех измерениях.

Как только вы вводите браны, следствия дуальности становятся еще более странными. Например, пятимерное пространство анти-де Ситтера с гравитацией, но без бран эквивалентно четырехмерной теории без гравитации. Но как только вы включите в пятимерную теорию брану, как сделали мы с Раманом, эквивалентная четырехмерная теория неожиданно содержит гравитацию. Означает ли эта дуальность, что я вводила вас в заблуждение, когда говорила, что закрученные геометрии являются многомерными теориями? Абсолютно нет. Дуальность интригует, но в действительности она ничего не меняет в том, что я вам рассказала. Даже если кто-нибудь найдет точную дуальную четырехмерную теорию, такую теорию будет крайне трудно изучать. Она должна содержать огромное число частиц и такие крайне сильные взаимодействия, что теория возмущений (см. гл. 15) будет к ней неприменима.

Теории, в которых объекты взаимодействуют с большой силой, почти никогда не поддаются интерпретации без альтернативного описания со слабым взаимодействием. И в этом случае таким разумным описанием является пятимерная теория. Только пятимерная теория допускает достаточно простую подходящую для вычислений формулировку, поэтому имеет смысл думать о теории в пятимерных терминах. Тем не менее, даже если пятимерная теория проще для работы, дуальность все равно заставляет меня интересоваться тем, что же в действительности значит слово «измерения». Мы знаем, что число измерений должно быть числом величин, необходимых для того, чтобы задать положение объекта. Но всегда ли мы уверены в том, что мы знаем, какие величины нужно считать? 

<< | >>
Источник: Рэндалл Лиза. Закрученные пассажи: Проникая в тайны скрытых размерностей пространства.. 2011

Еще по теме Закрученная геометрия и дуальность:

  1. 3.2. ФИНСЛЕРИАН И НОВАЯ ФИЗИКА. ТОПОЛОГИЧЕСКОЕ МОДЕЛИРОВАНИЕ РЕАЛЬНОСТИ
  2. Закрученная геометрия и дуальность
  3. т-дуальность
  4. Глоссарии