1. КАТЕГОРИЧЕСКИЕ ВЫСКАЗЫВАНИЯ
При рассмотрении способов образования сложных высказываний из простых внутреннее строение простых высказываний во внимание не принималось. Они брались как неразложимые атомы, обладающие только одним свойством: быть истинными или ложными.
Простые высказывания не случайно иногда именуются атомарными: из них, как из элементарных кирпичиков, с помощью логических связок "и", "или" и т.п. строятся разнообразные сложные ("молекулярные") высказывания.Теперь следует остановиться на вопросе о внутреннем строении, или внутренней структуре, самих простых высказываний: из каких конкретных частей они слагаются и как эти части связаны между собой.
Сразу же нужно подчеркнуть, что простые высказывания могут разлагаться на составные части по-разному. Результат разложения зависит от цели, ради которой оно осуществляется, т.е. от той теории логического вывода (логического следования), в рамках которой анализируются такие высказывания.
Далее будет рассматриваться лишь одна разновидность простых высказываний - категорические высказывания, по традиции называемые также категорическими суждениями.
Особый интерес к категорическим высказываниям объясняется прежде всего тем, что с исследования их логических связей началось развитие логики как науки. Кроме того, высказывания этого типа широко используются в наших рассуждениях.
Категорическое высказывание - это высказывание, в котором утверждается или отрицается наличие какого-то признака у всех или некоторых предметов рассматриваемого класса.
Например, в высказывании "Все динозавры вымерли" всем динозаврам (или, что то же самое, каждому из динозавров) приписывается признак "быть вымершими". В высказывании "Некоторые динозавры летали" способность летать приписывается некоторым динозаврам. В высказывании "Все кометы не астероиды" отрицается наличие признака "быть астероидом" у каждой из комет.
В высказывании "Некоторые животные не являются травоядными" отрицается травоядность некоторых животных.Если отвлечься от количественной характеристики, содержащейся в категорическом высказывании и выражающейся словами "все" и "некоторые", то получится два варианта таких высказываний: утвердительный и отрицательный. Их структура:
"S есть Р" и "S не есть Р",
где буква S представляет имя того предмета, о котором идет речь в высказывании, а буква Р - имя признака, присущего или не присущего этому предмету.
Предмет, о котором говорится в категорическом высказывании, называется субъектом, а его признак - предикатом. Субъект и предикат именуются терминами категорического высказывания и соединяются между собой связками "есть" или "не есть" ("является" или "не является" и т.п.). Например, в высказывании "Солнце есть звезда" терминами являются имена "Солнце" и "звезда" (первый из них - субъект высказывания, второй - его предикат), а слово "есть" - связка.
Простые высказывания типа "S есть (не есть) Р" называются атрибутивными: в них осуществляется атрибуция (приписывание) какого-то свойства предмету.
Атрибутивными высказываниям противостоят высказывания об отношениях, в которых устанавливаются отношения между двумя или большим числом предметов: "Три меньше пяти", "Киев больше Одессы", "Весна лучше осени", "Париж находится между Москвой и Нью- Йорком" и т.п. Высказывания об отношениях играют существенную роль в науке, особенно в математике. Они не сводятся к категорическим высказываниям, поскольку отношения между несколькими предметами (такие, как "равно", "любит", "теплее", "находится между" и т.д.) не сводятся к свойствам отдельных предметов.
В категорическом высказывании не просто устанавливается связь предмета и признака, но и дается определенная количественная характеристика субъекта высказывания. В высказываниях типа "Все S есть (не есть) Р" слово "все" означает "каждый из предметов соответствующего класса". В высказываниях типа "Некоторые S есть (не есть) Р" слово "некоторые" употребляется в неисключающем смысле и означает "некоторые, а может быть все".
В исключающем смысле слово "некоторые" означает "только некоторые", или "некоторые, но не все". Различие между двумя смыслами этого слова можно продемонстрировать на примере высказывания "Некоторые звезды есть звезды". В неисключающем смысле оно означает "Некоторые, а возможно и все звезды есть звезды" и является, очевидно, истинным. В исключающем же смысле данноевысказывание означает "Лишь некоторые звезды являются звездами" и является явно ложным.
В категорических высказываниях утверждается или отрицается принадлежность каких-то признаков рассматриваемым предметам и указывается, идет ли речь обо всех этих предметах или же о некоторых из них. Возможны, таким образом, четыре вида категорических высказываний:
Все S есть Р - общеутвердительное высказывание,
Некоторые S есть Р - частноутвердительное высказывание,
Все S не есть Р - общеотрицательное высказывание,
Некоторые S не есть Р - частноотрицательное высказывание.
Категорические высказывания можно рассматривать как результаты подстановки каких-то имен в следующие выражения с "пробелами" (многоточиями): "Все ... есть ...", "Некоторые ... есть ...", "Все ... не есть ..." и "Некоторые ... не есть ...". Каждое из этих выражений является логической постоянной (логической операцией), позволяющей из двух имен получить высказывание. Например, подставляя вместо многоточий имена "летающие" и "птицы", получаем, соответственно, следующие высказывания: "Все летающие есть птицы", "Некоторые летающие есть птицы", "Все летающие не есть птицы" и "Некоторые летающие не есть птицы". Первое и третье высказывания являются ложными, а второе и четвертое - истинными.
Аристотель истолковывал рассматриваемые четыре выражения именно как логические постоянные, не имеющие самостоятельного содержания и позволяющие из двух обладающих содержанием имен получать содержательные, являющиеся истинными или ложными высказывания.
В традиционной логике предполагалось также, что имена, подставляемые вместо многоточий (или переменных, если они используются вместо многоточий), не должны быть единичными или пустыми. Иначе говоря, высказывания типа "Платон - человек", "Все золотые горы - это горы" не относятся к категорическим в традиционном смысле, поскольку "Платон" - единичное имя, а "золотые горы" - пустое имя.
Обозначим оборот "Все ... есть ..." буквой а, оборот "Некоторые ... есть ..." буквой i (первые гласные буквы латинского слова affirmo - утверждаю), оборот "Все ... не есть ..." буквой е и оборот "Некоторые ... не есть ..." буквой о (гласные буквы латинского слова nego - отрицаю).
SaP - "Все S есть Р" - "Все жидкости упруги",
SiP - "Некоторые S есть Р" - "Некоторые животные говорят",
SeP - "Все S не есть Р" - "Все дельфины не есть рыбы",
SoP - "Некоторые S не есть Р" - "Некоторые металлы не есть жидкости".
Отношения между терминами в четырех видах категорических высказываний представляются с помощью кругов Эйлера следующим образом: 2.
Еще по теме 1. КАТЕГОРИЧЕСКИЕ ВЫСКАЗЫВАНИЯ:
- Л. Витгенштейн
- §55. Логика Аристотеля118
- VI ДОСТАТОЧНОЕ ОСНОВАНИЕ
- МЕТОДЫ ФОРМИРОВАНИЯ СОЗНАНИЯ ЛИЧНОСТИ
- 2. 3. МЕСТО ЛОГИКИ СТОИКОВ В ИСТОРИИ ЛОГИЧЕСКИХ УЧЕНИЙ: ОТНОШЕНИЕ К ЛОГИКЕ МЕГАРЦЕВ, АРИСТОТЕЛЯ И К СОВРЕМЕННОЙ ФОРМАЛЬНОЙ ЛОГИКЕ
- Глава 9 ЛОГИКА КАТЕГОРИЧЕСКИХ ВЫСКАЗЫВАНИЙ
- 1. КАТЕГОРИЧЕСКИЕ ВЫСКАЗЫВАНИЯ
- ЛОГИЧЕСКИЙ КВАДРАТ
- СОЦИАЛЬНО-КЛАССОВАЯ ПРИРОДА СИОНИЗМА
- ВВЕДЕНИЕ
- Отрицание случайности (случай — атеистический псевдоним чуда)
- «жизнь»
- §1. Проблема временной неопределенности
- Последняя резиденция гитлеровского правительства
- Глава III FAKE-ОППОЗИЦИЯ
- Новая союзная коалиция: конфликт интересов, «тайная война», на грани развала