<<
>>

НЕКОТОРЫЕ СХЕМЫ ПРАВИЛЬНЫХ РАССУЖДЕНИЙ

В правильном рассуждении заключение вытекает из посылок с логической необходимостью, и общая схема такого рассуждения представляет собой логический закон.

Логические законы лежат, таким образом, в основе логически совершенного мышления.

Рассуждать логически правильно - значит рассуждать в соответствии с законами логики.

Число схем правильного рассуждения (логических законов) бесконечно.

Многие известны нам из практики рассуждения. Мы применяем их интуитивно, не отдавая себе отчета, что в каждом правильно проведенном умозаключении мы используем тот или иной логический закон.

Вот некоторые, наиболее часто используемые, схемы.

Если есть первое, то есть второе; есть первое; следовательно, есть второе. Эта схема позволяет от утверждения условного высказывания и утверждения его основания перейти к утверждению следствия. По этой схеме протекает, в частности, рассуждение: "Если лед нагревают, он тает; лед нагревают; значит, он тает".

Это логически корректное движение мысли иногда путается со сходным, но логически неправильным ее движением от утверждения следствия условного высказывания к утверждению его основания: "Если есть первое, то есть второе; есть второе; значит, есть первое". Последняя схема не является логическим законом, от истинных посылок она может привести к ложному заключению. Скажем, идущее по этой схеме рассуждение "Если человеку восемьдесят лет, он стар; человек стар; следовательно, человеку восемьдесят лет" ведет к ошибочному заключению, что старику ровно восемьдесят лет.

Если есть первое, то есть второе; но второго нет; значит, нет первого. Посредством этой схемы от утверждения условного высказывания и отрицания его следствия осуществляется переход к отрицанию основания высказывания. Например: "Если наступает день, то становится светло; но сейчас не светло; следовательно, день не наступил". Иногда эту схему смешивают с логически некорректным движением мысли от отрицания основания условного высказывания к отрицанию его следствия: "Если есть первое, есть и второе; но первого нет; значит, нет и второго".

Если есть первое, то есть второе; следовательно, если нет второго, то нет и первого.

Эта

схема позволяет, используя отрицание, менять местами высказывания. К примеру, из высказывания "Если есть гром, есть также молния" получается высказывание "Если нет молнии, то нет и грома".

Есть по меньшей мере или первое или второе; но первого нет; значит, есть второе.

Например: "Бывает день или ночь; сейчас ночи нет; следовательно, сейчас день".

Либо имеет место первое, либо второе; есть первое; значит, нет второго. Посредством этой схемы от утверждения двух взаимоисключающих альтернатив и установления того, какая из них присутствует, осуществляется переход к отрицанию другой альтернативы. Например: "Достоевский родился либо в Москве, либо в Петербурге; он родился в Москве; значит, неверно, что он родился в Петербурге". В американском вестерне "Хороший, плохой и злой" Бандит говорит: "Запомни, Однорукий, что мир делится на две части: тех, кто держит револьвер, и тех, кто копает. Револьвер сейчас у меня, так что бери лопату". Это рассуждение также опирается на рассматриваемую схему.

Неверно, что есть и первое, и второе; следовательно, нет первого или нет второго; Есть первое или есть второе; значит, неверно, что нет первого и нет второго. Эти и близкие им схемы позволяют переходить от утверждений с союзом "и" к утверждениям с союзом "или", и наоборот. Используя данные схемы, от утверждения "Неверно, что сегодня ветер и дождь" можно перейти к утверждению "Неверно, что сегодня ветер или неверно, что сегодня дождь" и от утверждения "Амундсен или Скотт был первым на Южном полюсе" перейти к утверждению "Неверно, что ни Амундсен, ни Скотт не является первым человеком, побывавшим на Южном полюсе".

Таковы некоторые схемы правильного рассуждения. В дальнейшем эти и другие схемы будут рассмотрены более детально и представлены с использованием специальной логической символики. 6.

ТРА ДИЦИОННАЯ И СОВРЕМЕННАЯ ЛОГИКА

История логики охватывает около двух с половиной тысячелетий. "Старше" формальной логики, пожалуй, только философия и математика.

В длинной и богатой событиями истории развития логики отчетливо выделяются два основных этапа.

Первый - от древнегреческой логики до возникновения во второй половине прошлого века современной логики. Второй - с этого времени до наших дней.

На первом этапе, обычно называемом традиционной логикой, формальная логика развивалась очень медленно. Обсуждавшиеся в ней проблемы мало чем отличались от проблем, поставленных еще Аристотелем. Это дало повод немецкому философу И.Канту (1724-1804) в свое время придти к выводу, что формальная логика является завершенной наукой, не продвинувшейся со времени Аристотеля ни на один шаг.

Кант не заметил, что еще с XVII в. стали назревать предпосылки для научной революции в логике. Именно в это время получила ясное выражение идея представить доказательство как вычисление, подобное вычислению в математике.

Эта идея связана главным образом с именем немецкого философа и математика Г.Лейбница (1646-1716). По Лейбницу, вычисление суммы или разности чисел осуществляется на основе простых правил, принимающих во внимание только форму чисел, а не их смысл. Результат вычисления однозначно предопределяется этими, не допускающими разночтения правилами, и его нельзя оспорить. Лейбниц мечтал о времени, когда умозаключение будет преобразовано в вычисление. Когда это случится, споры, обычные между философами, станут так же невозможны, как невозможны они между вычислителями. Вместо спора они возьмут в руки перья и скажут: "Будем вычислять".

Идеи Лейбница не оказали, однако, заметного влияния на его современников. Энергичное развитие логики началось позже, в XIX в.

Немецкий математик и логик Г. Фреге (1848-1925) в своих работах стал применять формальную логику для исследования оснований математики. Фреге был убежден, что "арифметика есть часть логики и не должна заимствовать ни у опыта, ни у созерцания никакого обоснования". Пытаясь свести математику к логике, он реконструировал последнюю. Логическая теория Фреге -

провозвестник всех нынешних теорий правильного рассуждения.

Идея сведения всей чистой математики к логике была подхвачена английским логиком и философом Б.Расселом (1872-1970). Но последующее развитие логики показало неосуществимость этой грандиозной по своему замыслу попытки. Она привела, однако, к сближению математики и логики и к широкому проникновению плодотворных методов первой во вторую.

В России в конце прошлого - начале нынешнего века, когда научная революция в логике набрала силу, ситуация была довольно сложной. И в теории, и в практике преподавания господствовала так называемая "академическая логика", избегавшая острых проблем и постоянно подменявшая науку логику невнятно изложенной методологией науки, истолкованной к тому же по заимствованным и устаревшим образцам. И тем не менее были люди, стоявшие на уровне достижений логики своего времени и внесшие в ее развитие важный вклад. Прежде всего это доктор астрономии Казанского университета, логик и математик П.С.Порецкий. Сдержанное общее отношение к математической логике, разделявшееся многими русскими математиками, во многом осложнило его творчество. Часть своих работ он вынужден был опубликовать за границей. Но его идеи оказали в конечном счете существенное влияние на развитие алгебраически трактуемой логики как в нашей стране, так и за рубежом. Порецкий первым в России начал читать лекции по современной логике, о которой он говорил, что это "по предмету своему есть логика, а по методу математика". Исследования Порецкого продолжают оказывать стимулирующее влияние на развитие алгебраических теорий логики и в наши дни.

Одним из первых (еще в 1910 г.) сомнения в неограниченной приложимости логического закона противоречия, о котором пойдет речь далее, высказал логик Н.А.Васильев. "Предположите, - говорил он, - мир осуществленного противоречия, где противоречия выводились бы, разве такое познание не было бы логическим?" Васильев, подобно Ломоносову, наряду с научными статьями, писал порой и стихи. В них своеобразно преломлялись его логические идеи, в частности идея воображаемых (возможных) миров:

... Мне грезится безвестная планета,

Где все идет иначе, чем у нас.

В качестве логики воображаемого мира он предложил свою теорию без закона противоречия, долгое время считавшегося центральным принципом логики. Васильев полагал необходимым ограничить и действие закона исключенного третьего, о котором также говорится в дальнейшем. В этом смысле Васильев явился одним из идейных предшественников логики наших дней. Идеи Васильева при его жизни подвергались жесткой критике, в результате он оставил занятия логикой. Потребовалось полвека, прежде чем его "воображаемая логика" без законов противоречия и исключенного третьего была оценена по достоинству. Идеи, касающиеся ограниченной приложимости закона исключенного третьего и близких ему способов математического доказательства, были развиты математиками А.Н.Колмогоровым,

В.А.Гливенко, А.А.Марковым и др. В результате возникла так называемая конструктивная логика, считающая неправомерным перенос ряда логических принципов, применимых в

рассуждениях о конечных множествах, на область бесконечных множеств.

Известный русский физик П.Эренфест первым высказал гипотезу о возможности применения современной ему логики в технике. В 1910 г. он писал:

"Символическая формулировка дает возможность "вычислять" следствия из таких сложных систем посылок, в которых при словесном изложении почти или совершенно невозможно разобраться. Дело в том, что в физике и технике действительно существуют такие сложные системы посылок. Пример: пусть имеется проект схемы проводов автоматической телефонной станции. Надо определить: 1) будет ли она правильно функционировать при любой комбинации, могущей встретиться в ходе деятельности станции; 2) не содержит ли она излишних усложнений. Каждая такая комбинация является посылкой, каждый маленький коммутатор есть логическое "или-или", воплощенное в эбоните и латуни; все вместе -

система чисто качественных (сети слабого тока, поэтому не количественных)

"посылок", ничего не оставляющая желать в отношении сложности и запутанности. Следует ли при решении этих вопросов раз и навсегда удовлетвориться рутинным способом преобразования на графике? Правда ли, что, несмотря на существование уже разработанной алгебры логики, своего рода "алгебра распределительных схем" должна считаться утопией?"

В дальнейшем гипотеза Эренфеста получила воплощение в теории релейно-контактных систем.

В общем, оглядываясь на историю распространения логики, можно сказать, что лучшие русские логики всегда стремились стоять на уровне современных им мировых теорий и концепций, органически чуждаясь всякого рода логического сектантства и сепаратизма.

Современную логику нередко называют математической, подчеркивая тем самым своеобразие новых ее методов в сравнении с использовавшимися ранее в традиционной логике.

Одна из характерных черт этих методов - широкое использование разнообразных символов вместо слов и выражений обычного языка. Символы применял в ряде случаев еще Аристотель, а затем и все последующие логики. Однако теперь в использовании символики был сделан качественно новый шаг. В логике стали использоваться специально построенные языки, содержащие только специальные символы и не включающие ни одного слова обычного разговорного языка.

Широкое использование символических средств послужило основанием того, что, новую логику стали называть символической. Названия "математическая логика" и "символическая логика", обычно употребляемые и сейчас, обозначают одно и то же - современную формальную логику. Она занимается тем же, чем всегда занималась логика - исследованием правильных способов рассуждения. 7.

<< | >>
Источник: Ивин А.А.. Логика: учебник для гуманитарных факультетов. М.: ФАИР-ПРЕСС. 2002

Еще по теме НЕКОТОРЫЕ СХЕМЫ ПРАВИЛЬНЫХ РАССУЖДЕНИЙ:

  1. 1. ПРАВИЛЬНОЕ РАССУЖДЕНИЕ
  2. Некоторые содержательные аспекты, определяющие различие элементов схемы строения абсолютного духа у Гегеля и Шеллинга
  3. Схемы отношений
  4. Я-схемы
  5. Схемы обслуживания складских систем
  6. Интегральные схемы.
  7. Схемы: три особенности
  8. Схематические когнитивные структуры и Я-схемы
  9. ИНТЕГРАЛЬНЫЕ СХЕМЫ
  10. 3.2. РАЗРАБОТКА СТРУКТУРНОЙ СХЕМЫ.
  11. «Ты человек правильный»
  12. 2. Риэлторские схемы ухода от налогов
  13. Перезагрузка: об обновлении схемы характеристики ЭГП