<<
>>

ПОДТВЕРЖДЕНИЕ СЛЕДСТВИЙ

В науке, да и не только в ней, непосредственное наблюдение того, о чем говорится в проверяемом утверждении, редкость.

Наиболее важным и вместе с тем универсальным способом подтверждения является выведение из обосновываемого положения логических следствий и их последующая опытная проверка.

Подтверждение следствий оценивается при этом как свидетельство в пользу истинности самого

положения.

Вот два примера такого подтверждения.

Тот, кто ясно мыслит, ясно говорит. Пробным камнем ясного мышления является умение передать свои знания кому-то другому, возможно, далекому об обсуждаемого предмета. Если человек обладает таким умением и его речь ясна и убедительна, то это можно считать подтверждением того, что его мышление также является ясным.

Известно, что сильно охлажденный предмет в теплом помещении покрывается капельками росы. Если мы видим, что у человека, вошедшего в дом, тут же запотели очки, мы можем с достаточной уверенностью заключить, что на улице морозно.

В каждом из этих примеров рассуждение идет по схеме:

"Из первого вытекает второе; второе истинно; значит, первое также является, по всей вероятности, истинным".

(Если на улице мороз, у человека, вошедшего в дом, очки запотеют, очки и в самом деле запотели; на улице мороз").

Это - не дедуктивное рассуждение, истинность посылок не гарантирует здесь истинности заключения. Из посылок "если есть первое, то есть второе" и "есть второе" заключение "есть первое" вытекает только с некоторой вероятностью (например, человек, у которого в теплом помещении запотели очки, мог специально охладить их, скажем, в холодильнике, чтобы затем внушить нам, будто на улице сильный мороз).

Выведение следствий и их подтверждение, взятое сам по себе, никогда не в состоянии установить справедливость обосновываемого положения. Подтверждение следствия только повышает вероятность последнего. Но ясно, что далеко не безразлично, является выдвинутое положение маловероятным или же оно высоко правдоподобно.

Чем большее число следствий нашло подтверждение, тем выше вероятность проверяемого утверждения. Отсюда - рекомендация выводить из выдвигаемых и требующих надежного фундамента положений как можно больше логических следствий с целью их проверки.

Значение имеет не только количество следствий, но и их характер. Чем более неожиданные следствия какого-то положения получают подтверждение, тем более сильный аргумент они дают в его поддержку. И наоборот, чем более ожидаемо в свете уже получивших подтверждение следствий новое следствие, тем меньше его вклад в обоснование проверяемого положения.

Общая теория относительности А.Эйнштейна предсказала своеобразный и неожиданный эффект: не только планеты вращаются вокруг Солнца, но и эллипсы, которые они описывают, должны очень медленно вращаться относительно солнца.

Это вращение тем больше, чем ближе планета к Солнцу. Для всех планет, кроме Меркурия, оно настолько мало, что не может быть уловлено. Эллипс Меркурия, ближайшей к Солнцу планеты, осуществляет полное вращение в 3 млн. лет, что удается обнаружить. И вращение этого эллипса действительно было открыто

астрономами, причем задолго до Эйнштейна. Никакого объяснения такому вращению не находилось.

Теория относительности не опиралась при своей формулировке на данные об орбите Меркурия. Поэтому когда из ее гравитационных уравнений было выведено оказавшееся верным заключение о вращении эллипса Меркурия, это справедливо было расценено как важное свидетельство в пользу теории относительности.

Подтверждение неожиданных предсказаний, сделанных на основе какого-то положения, существенно повышает его правдоподобность.

Неожиданное предсказание - это предсказание, связанное с риском, что оно не подтвердится. Чем более рискованно предсказание, выдвигаемое на основе какой-то теории, тем больший вклад в ее обоснование вносит подтверждение этого предсказания.

Типичным примером здесь может служить предсказание теории гравитации Эйнштейна, что тяжелые массы (такие, как Солнце) должны притягивать свет точно так же, как они притягивают материальные тела. Вычисления, произведенные на основе этой теории, показывали, что свет далекой фиксированной звезды, видимой вблизи Солнца, достиг бы Земли по такому направлению, что звезда казалась бы смещенной в сторону от Солнца, иначе говоря, наблюдаемое положение звезды было бы сдвинуто в сторону от Солнца по сравнению с реальным положением. Этот эффект нельзя наблюдать в обычных условиях, поскольку близкие к Солнцу звезды совершенно теряются в его лучах. Их можно сфотографировать только во время затмения. Если затем те же самые звезды сфотографировать ночью, то можно измерить различия в их положении на обеих фотографиях и таким образом подтвердить предсказанный эффект. Экспедиция Эддингтона отправилась в Южное полушарие, где можно было наблюдать очередное солнечное затмение, и подтвердила, что звезды действительно меняют свое положение на фотографиях, сделанных днем и ночью. Это оказалось одним из наиболее важных свидетельств в пользу эйнштейновской теории гравитации.

Как бы ни было велико число подтверждающихся следствий и, какими бы неожиданными, интересными или важными они ни оказались, положение, из которого они выведены, все равно остается только вероятным. Никакие подтвердившиеся следствия не способны сделать его истинным. Даже самое простое утверждение в принципе не может быть доказано на основе одного подтверждения вытекающих из него следствий.

Это - центральный пункт всех рассуждений об эмпирическом подтверждении. Непосредственное наблюдение того, о чем говорится в утверждении, дает уверенность в истинности последнего. Но область применения такого наблюдения является ограниченной. Подтверждение следствий - универсальный прием, применимый ко всем утверждениям. Однако прием индуктивный, только повышающий правдоподобие утверждения, но не делающий его достоверным. 4.

ПОЛНАЯ ИНДУКЦИЯ И МАТЕМАТИЧЕСКАЯ ИНДУКЦИЯ

Наряду с неполной индукцией принято выделять в качестве особого вида индуктивного умозаключения полную индукцию.

Ее схема:

А , есть В, Ат есть В, ..., А есть В;

1 ’2 ’ ’ n ’

Никаких А, кроме А^ ..., Ап, нет;

Следовательно, каждое А есть В.

Здесь в посылках о каждом из предметов, входящих в рассматриваемое множество, утверждается, что он имеет определенное свойство. В заключении говорится, что все предметы данного множества обладают этим свойством.

К примеру, учитель, читая список учеников какого-то класса, убеждается, что названные им ученики присутствуют. На этом основании учитель делает вывод, что присутствуют все ученики.

В полной индукции заключение с необходимостью, а не с некоторой вероятностью вытекает из посылок. Эта "индукция" является, таким образом, разновидностью дедуктивного умозаключения, хотя по внешней форме, по ходу мысли напоминает неполную индукцию.

К дедукции относится и так называемая математическая индукция, широко используемая в математике.

Умозаключение математической индукции слагается из двух посылок и заключения. Первая из посылок говорит, что рассматриваемое свойство присуще первому предмету рассматриваемого ряда. Вторая посылка утверждает, что если это свойство есть у произвольного предмета данного ряда, то оно есть и у непосредственно следующего за ним предмета. Заключение утверждает, что свойство присуще каждому предмету ряда.

Общая схема математической индукции:

A(1);

если А (k), то A (k + 1); следовательно А (n).

Ни полная, ни математическая индукция не являются индуктивным умозаключением в собственном смысле этого слова. И та, и другая всегда дают истинные заключения из истинных посылок и только внешне напоминают индуктивные рассуждения. 5.

<< | >>
Источник: Ивин А.А.. Логика: учебник для гуманитарных факультетов. М.: ФАИР-ПРЕСС. 2002

Еще по теме ПОДТВЕРЖДЕНИЕ СЛЕДСТВИЙ:

  1. Подтверждение материальных производных
  2. Личко Н.М.. Стандартизация и подтверждение соответствия сельскохозяйственной продукции. Учебник для вузов, 2013
  3. ПСИХОЛОГИЯ ВОЛИ В ТРУДАХ С. Л. РУБИНШТЕЙНА: ЭМПИРИЧЕСКОЕ ПОДТВЕРЖДЕНИЕ ТЕОРЕТИЧЕСКИХ ВЫВОДОВ М. В. Чумаков (Курган)
  4. Акты военно-служебной регламентации «Приговор о местничестве» 1550 г. и его подтверждения и уточнения 1580-х, 1604,1620 гг.
  5. ТАЙНА СЛЕДСТВИЯ И ДОЗНАНИЯ
  6. 8.1. Понятия «причина» и «следствие»
  7. Причина — действие — следствие
  8. СОКОЛОВ НАЧИНАЕТ СЛЕДСТВИЕ
  9. Глава 8 Причины и следствия
  10. 3. Судебное следствие, его задачи и средства
  11. § VII. Следствия религиозных суеверий
  12. 13.1.2 Психофизический дуализм и скептические следствия
  13. 2.4.3 Онтологические следствия изобразительной теории
  14. § 1. Компьютеризация науки, ее проблемы и следствия