ИЗМЕРЕНИЕ СВЯЗИ И ЗНАЧИМОСТИ ДЛЯ ПОРЯДКОВЫХ ПЕРЕМЕННЫХ
Когда мы анализируем две подобные переменные, то возможны два случая зависимости. Первый, при котором случаи ранжируются в одном и том же порядке в обеих переменных (большие значения – с большими, меньшие – не меньшими), называется полное согласие. Второй, в котором случаи расположены в прямо противоположном порядке (большие значения одной переменной связаны с меньшими значениями другой и наоборот), называется полная инверсия. Тогда возможность предсказания (т.е.степень связи между двумя переменными) будет следствием того, насколько тесно ранги одной переменной связаны с рангами другой либо по типу “полное соответствие” (если G положительна и приближается к единице), либо но типу “полная инверсия” (если G отрицательна и приближается к –1). Значение коэффициента G, равное 0, [c.423] свидетельствует об отсутствии связи. Формула для исчисления G такова:
где fа = частота соответствий в ранжировании двух переменных;
fi = частота инверсий в ранжировании двух переменных.
G основана на относительном расположении набора случаев по двум переменным. Случаи сначала располагаются в восходящем порядке по независимой переменной. Затем это сравнивается с порядком расположения по зависимой переменной. Считается, что те переменные, для которых заданный порядок сохраняется, находятся в соответствии, а те, для которых этот порядок меняется на противоположный, связаны по типу инверсии.
Недостаток места не позволяет нам рассмотреть эти процедуры детально или обсудить способы подсчета G для вариантов, когда количество признаков мало и/или между рангами не встречается одинаковых значений (параллелей). Лучше мы подробнее остановимся на процедурах, необходимых для подсчета G для более распространенных условий: когда есть параллели (более одного признака с одним и тем же рангом), а само количество признаков достаточно велико4.Здесь, как и ранее, следует обратиться к таблице взаимной сопряженности признаков, такой, какой является табл. 15.5.
Таблица 15.5.
Обобщенная таблица взаимной сопряженности признаков
Значения независимой переменной | Значения зависимой переменной | ||
низкие | средние | высокие | |
Низкие Средние Высокие | a d g | f e h | c f i |
Для того чтобы измерить связь между этими двумя переменными, необходимо определить количество соответствий и инверсий, относящихся к каждой ячейке таблицы. [c.424] Соответствия расположены во всех ячейках под (по направлению к более высоким значениям независимой переменной) и справа (по направлению к более высоким значениям зависимой переменной) от любой определенной ячейки. Так, соответствия относительно случаев ячейки о включают все случаи в ячейках e, f, h и i, поскольку эти случаи имеют более высокие ранги, чем случаи ячейки a по обеим переменным. Инверсии расположены во всех ячейках под (по направлению к более высоким значениям независимой переменной) и слева (по направлению к более низким значениям зависимой переменной) от любой определенной ячейки. Так, инверсии относительно случаев ячейки с включают все случаи в ячейках d, е, g и h поскольку это случаи более высоких по сравнению с ячейкой с значений по одной переменной и более низких – по другой.
Частота соответствий (fа в уравнении), таким образом, для каждой ячейки есть сумма всех случаев по каждой ячейке, умноженных на количество случаев во всех ячейках ниже и справа (a[e+f+h+i]+b[f+i]+e[i]). Частота инверсий (fi в уравнении) – это сумма всех случаев по каждой ячейке, умноженная на количество случаев во всех ячейках ниже и слева (b[d+g]+c[d+e+g+h]+f[g+h]). Полученные значения просто подставляются в уравнение.fa = 45(23+5+2+5)+5(5+5)+2(2+5)+23(5) = 1575+50+14+115 = 1754
fi = 5(2+3)+10(2+23+3+2)+23(3)+5(3+2) = 25+300+69+25 = 419
Эта цифра говорит о том, что во взаимном расположении двух переменных на 61% больше соответствий, чем несоответствий. Если fi превышает fа, G будет иметь отрицательный знак, что означает наличие инверсионного типа взаимосвязей.
Проверка статистической значимости коэффициента основана на том факте, что распределение G в выборке из совокупности, где нет значимых связей, приближается к нормальному, так же как распределение гипотетического коэффициента в выборке, которую мы обсуждали раньше. Если это так, то мы можем проверить, не является ли [c.425] любое конкретное значение G следствием случайности, путем вычисления его стандартной оценки (z), определения ее расположения под нормальной кривой и оценки таким образом этой возможности. Целиком подсчет zG (стандартной оценки гаммы) здесь не будет представлен, поскольку формула сложна и ее понимание требует более детального знания статистики по сравнению с уровнем нашей книги. Некоторые сведения о формуле можно найти в книге Фримана (см. прим. 1), и ее подсчет предусмотрен такими пакетами прикладных программ, как SPSS. Достаточно сказать, что когда G превышает ±1645 (когда G удалена от медианы на 1645 единиц стандартного отклонения), G достаточна, чтобы иметь доверительный уровень в 0,05, а если zg превышает ±2326 (когда G удалена от медианы в том или ином направлении на 2326 единиц стандартного отклонения), G достигает значимости на уровне 0,01. Интерпретация этих результатов та же, что в приведенном выше, более общем примере. [c.426]
Еще по теме ИЗМЕРЕНИЕ СВЯЗИ И ЗНАЧИМОСТИ ДЛЯ ПОРЯДКОВЫХ ПЕРЕМЕННЫХ:
- 7.1. Понятие рейтинга и рейтингового замера в социологии
- Меры связи
- Общие принципы
- Глава 8. Сила нервной системы и абсолютная чувствительность
- ТИПЫ ИЗМЕРИТЕЛЬНЫХ ШКАЛ
- ОБРАБОТКА РЕЗУЛЬТАТОВ ЭКСПЕРИМЕНТАЛЬНОГО ИССЛЕДОВАНИЯ
- ИЗМЕРЕНИЕ СВЯЗИ И ЗНАЧИМОСТИ ДЛЯ ПОРЯДКОВЫХ ПЕРЕМЕННЫХ
- РЕШЕНИЕ ОБЩИХ ПРОБЛЕМ МНОЖЕСТВЕННОЙ РЕГРЕССИИ
- СЛОВАРЬ ТЕРМИНОВ
- Приложение 3. Об измерениях и анализе эмпирических данных
- Спортивные результаты, как атрибут спорта; факторы и тенденции их динамики
- Детерминанты интенсивности: степень относительной депривации
- §3. Динамика формирования эколого-профессиональной компетентности студентов гуманитарного вуза в результате эксперимента
- 1.7. МЕТОДОЛОГИЯ ИЗМЕРЕНИЙ